
INTRODUCTION

Basic concepts in mixed effects population models

To understand the basis of population kinetics, one need only

realize the common thread that runs through most scientific

efforts: a desire to generate overall population predictions based

on sampling a limited amount of individuals. For illustrative

purposes, consider a study in which the relationship between the

birthweight of a sample of piglets of the same breed and the

increase in weight during the first 20 days of life is investigated.

In this study, piglets are selected at random, each one from a

different litter, and the data are analysed via a simple linear

regression. If birthweight is normally distributed, the data can be
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analysed using parametric procedures. The resulting model

might be expressed algebraically as follows:

Wt. Increase= y1 + (y26 Birthweight) + e

where y1 and y2 are the intercept and the regression coefficient

(slope), respectively, and e represents the error term, defined as

the difference between predicted vs. observed weight increase for

any birthweight. This uncertainty may be attributable to within

subject variability in productivity (for example, day-to-day

variation, misspecification of the regression model (lack of

linearity), error in measuring weight, and unexplained fluctua-

tions) as well as uncertainty due to failure to define other factors

that affect the relationship between birthweight and weight

increase (e.g. covariates such as gender, genetic background,

sow parity, temperature, hours of light, ventilation systems,

other management conditions, etc.).

After observing the data, the investigator notices that there is

a very poor fit between observed and predicted values of weight

increase. Possibly, a multimodal frequency distribution is

observed for the outcome variable. Therefore, a decision is made

to consider the inclusion of covariates in the regression model.

For example, males may grow faster than females. Older sows

may provide better nourishment than younger sows. Animals

exposed to steady warm temperatures during the first few days

may grow faster than those exposed to excessive or too low

temperatures. The genetic background may also influence

weight increase. By definition, these covariates are considered

to be perfectly defined and without experimental error (for

example, a given piglet will be classified as either male or

female). Therefore, covariates are considered to be `fixed' effects.

Up to this point, the investigator has made some basic

predictions with respect to the relationship between birthweight

and weight increase. While these relationships may be adequate

to describe the sample of subjects included in the study, they may

not accurately predict the relationship between birthweight and

weight increase across the entire population of piglets. Assuming

that the appropriate covariates were included in the model,

prediction inaccuracies may be attributed to the random

variation in weight increase that normally occurs within a

piglet population.

To assess the types of variations that can affect these pre-

dictions, the investigator must consider the uncertainty asso-

ciated both within an individual (e) and between individuals (Z).
Furthermore, if an infinite number of observations were obtained

both within and across individuals, the investigator would be

able to characterize the distribution of these error terms. The

investigator would obtain an estimate of the within-subject

variance (s2) and intersubject (population) variance (o2).

Ultimately, to adequately predict the relationship between

birthweight and weight increase across all piglets, we can define

both a structural model relating birthweight plus covariates to

weight increase (the `fixed' effects) and a model describing the

random variation within and between subjects that occurs in the

population (the `random' effects). If s2 and o2 are normally

distributed, parametric statistical methods are appropriate.

However, if these sources of variation are skewed or multimodal,

nonparametric statistical methods would need to be employed.

Regression equations would contain fixed and random effects.

By developing mixed-effect models that provide both a

structural model and a variance model, the investigator

enhances the ability to predict, with some degree of certainty,

an individual piglet weight increase on the basis of birthweight.

In other words, from a range of possible outcomes, there is a

weight increase/birthweight relationship which is the most

probable based upon the characteristics of the population. If we

extend these concepts to the therapeutic arena, we can use

similar processes to model the relationship between dose vs. the

blood concentrations. Instead of the equation relating weight

increase to birthweight and the covariates, we have a

pharmacokinetic equation that relates blood concentration at

different times to dose. These are the fundamental considerations

upon which population pharmacokinetic models are built.

Application of population models to pharmacokinetics

Pharmacokinetics in veterinary medicine has been used to

describe the processes of drug absorption, distribution and

elimination (metabolism and excretion) in animals. Drugs

administered intravascularly distribute to sites where they

produce the intended effects. The rate and extent of access to

these sites of action (therapeutic or toxic) in the presence of

competing events such as metabolism, excretion and distribution

to other tissues, or presence of other drugs will determine the

therapeutic outcome. If a drug is administered extravascularly,

the accessibility of the drug to the systemic circulation, or

systemic availability, will also influence the clinical outcome.

This process is especially complex when the extravascular route

is oral, as the drug must gain access to the portal circulation

from the enteric environment and `survive' passage through the

gut wall and liver with their respective ability to metabolize and

inactivate drugs. Knowledge of the pharmacokinetic and

pharmacodynamic parameters that describe drug disposition

and effects in animals, as well as the interindividual variability

associated with these parameters and the pathophysiological

factors that contribute to this variability, are critical to the

design of appropriate dosage regimens in animals.

The goal of drug administration consists of achieving the

desired effect while minimizing the risks of toxicity, and in the

case of food animals, avoiding the occurrence of violative tissue

residue concentrations. The complex processes that determine

the circulation of drugs through the body, schematically outlined

in Fig. 1, are influenced by many different factors, a number of

which arise from the physiology of the subject receiving the

drug. In addition, pathologic processes can alter drug disposition

by modifying the physiological functions that influence the

circulation of drugs in the body. Altered pharmacokinetics may

ultimately result in therapeutic failure or altered tissue distribu-

tion. Consequently, knowledge of the factors that modify the

disposition of drugs and the extent of this modification is critical

to properly describe the kinetic relationships between drugs and

patients. In other words, one must determine the sources of

pharmacokinetic variability in a patient population as well as the
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magnitude of that variability, in order to design dosage regimens

that account for individual patient characteristics. This knowledge

may then be used to design dosage regimens tailored to different

subsets of the population having these clinical characteristics.

This approach is particularly important in the case of drugs with

narrow therapeutic indices, especially those that show high

interindividual variability even in apparently homogeneous

patient populations. Potential sources of variability encountered

in the clinical setting are age, weight, gender, breed, disease

status, concomitant use of other drugs, altered physiological

functions (such as renal or hepatic), hydration status, cardiac

output, fever, nutritional status, genetic polymorphisms, etc.

Although a detailed study of these and other variables is beyond

the scope of this paper, it is important to keep in mind the

enormous complexity of the processes that determine the disposi-

tion and effects of drugs in individuals, and the relationships of

these processes with pathophysiological factors in individuals. In

veterinary medicine this is further complicated by the variety of

animal species to which therapeutic agents are administered. As

defining the role of these factors in veterinary therapeutics has

been neglected, a goal of this review is to present population

pharmacokinetic techniques that can be used to account for the

influence of these factors in the therapeutic outcome.

Customarily, dosage regimens are determined from studies

conducted in a small number of generally healthy individuals

which cannot account for all of the possible clinical factors that

may be present in a patient and the relationship of these factors

to drug disposition and effect. Dosage regimens designed in this

way for drugs with high interindividual variability and narrow

therapeutic indices have the potential to induce toxicity or lack

of efficacy in diseased animals. Moreover, in veterinary medicine

one deals not only with animals to be relieved from disease or

suffering, but also with food animals whose tissues will enter into

the human food supply. Therefore, concerns arise regarding not

only toxicity or lack of efficacy, but also the appearance of

violative tissue residues due to unaccounted variation in drug

disposition. In order to design appropriate dosage regimens for

drugs with narrow therapeutic indices and/or high interindivi-

dual variability in disposition, alternative modelling techniques

must be used that account for the influence of pathophysiolo-

gical factors on the pharmacokinetics and pharmacodynamics.

Various methods which establish relationships between

parameter estimates and pathophysiological variables have been

developed over the last two decades for prediction of serum drug

concentrations and estimation of pharmacokinetic and pharma-

codynamic parameters in heterogeneous populations of patients

receiving drug treatment (Sheiner & Beal, 1980, 1981b, 1983;

Mallet et al., 1988; Schumitzky, 1991; Jelliffe et al., 1994). The

integration of pharmacokinetic and pharmacodynamic models in

population studies allows the time course of a drug in the body to

be linked with the extent and duration of drug effect while

accounting for the influence of concomitant physiological

variables. An important feature of these methods is the ability

to make parameter estimates and valid predictions from sparse

data obtained during routine monitoring of clinical patients

rather than from carefully designed experimental studies. These

data are usually insufficient to characterize each individual's

pharmacokinetic profile, and obtained with analytical techni-

ques of diverse qualities and limits of detection (Boeckmann et

al., 1994). Population pharmacokinetic methods are more

efficient and practical than traditional methods for analysing

such data (provided that the intraindividual variability is

modelled accordingly). This does not mean that population

studies cannot be conducted according to a carefully designed
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processes that determine the disposition of a

drug in the body and the extent and duration of

drug action.
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protocol. In fact, whenever possible, this should be done.

Simulation studies can be conducted before initiating actual study

to determine the influence of different aspects of data collection

designs (number of subjects, number of samples per subject and

sampling times) on the efficiency of parameter estimation

(D'Argenio, 1981; Al-Banna et al., 1990; Ette et al., 1995a).

Finally, the analysis and interpretation of clinical trial data is

another area that benefits deeply from the ability of population

models to handle less than perfectly designed sets of data. A

common problem in the analysis of clinical trials for certain

drugs is having to deal with censored data, such as those

produced when subjects drop out of a study. In this type of

situation, patient samples are biased toward those with a certain

clinical outcome. For example, in analgesia trials some patients

may be remedicated with an active agent if their pain relief is not

sufficient. This would make the sample of patients at any given

time to be biased toward those with better relief (Sheiner, 1994).

Population methods can be used in situations such as this that

model the time course of effect as a function of time, dose and

individual random effects. This allows one to obtain unbiased

predictions of the output of untested trial doses, as an aid to

selecting recommended doses.

PARAMETER ESTIMATION IN POPULATION

PHARMACOKINETICS

Disease states may alter physiological processes which in turn

may influence both the fate and effects of drugs administered to

diseased individuals. Consequently, estimates of the basic

characteristics of drug disposition in healthy individuals arising

from `average' demographic subsets of the population may, in

many cases, only approximate the real characteristics of the

disposition in individuals undergoing different disease processes

and/or belonging to different demographic categories. The

enormous complexity of the physiological processes involved in

drug disposition and the dependency of these processes on

individual features, precludes pharmacokinetic homogeneity

even in healthy subjects. Hence, when disease is present and

physiological mechanisms are altered, the degree of hetero-

geneity among individuals in drug disposition will be much

greater as individual patients respond differently to the disease

process. Therefore, designing drug dosage regimens under

disease conditions requires estimating the pharmacokinetic

parameters relative to the clinical factors that are present in

an individual, as well as estimating the precision with which

these pharmacokinetic parameters can be characterized. In other

words, when a drug is administered to a diseased patient, the

following two questions arise. First, what is the average value of

a pharmacokinetic parameter (e.g. clearance) in a population in

relation to a determined value of a similar physiological function

(e.g. renal function) that can be directly measured or estimated

by means of a surrogate marker (e.g. creatinine clearance)?

Second, how well (with what degree of certainty) does this

population estimate reflect the value of the pharmacokinetic

parameter (e.g. clearance) in an individual, if we know for that

individual the value of the physiological function (e.g. renal

function) that is related to the pharmacokinetic parameter?

Different methodologies have been described in the literature to

address these two questions. Among them, the method known as

standard two-stage, as well as the more recent `true' population

pharmacokinetic methods using both parametric and nonpara-

metric approaches, have been by far the most commonly used.

Only the `true' population pharmacokinetic methods allow one

to explicitly answer these questions based upon a sample of the

entire patient population. Unfortunately, these have not been

applied to problems in veterinary medicine. The traditional two-

stage method provides information that is less generalizable and

cannot handle sparse sampling per individual. Nevertheless, the

latter is a valuable analytical tool when sufficient plasma

samples can be obtained per individual.

Traditional standard two-stage method

The traditional approach to pharmacokinetic parameter estima-

tion is referred to as the standard two-stage method (STS). In the

first stage, the pharmacokinetic profile of each individual under

study is estimated using traditional analysis to estimate the

primary pharmacokinetic parameters. As most pharmacokinetic

models are statistically nonlinear, usually nonlinear regression

(weighted or unweighted) with the least-square criterion is used.

In the second stage, the individual parameter estimates are

pooled to obtain an average value (e.g. mean) that is

representative of the study population, and a measure of an

apparent interindividual variability (e.g. variance) that actually

includes all sources of variability (both inter and intraindivi-

dual). In a further step, the relationship between pharmacoki-

netic parameters and clinical characteristics can be studied by

classical regression techniques (e.g. clearance and renal func-

tion, or volume of distribution and age). Thus, the STS method

proceeds first with the individual (stage 1) and then the use of

statistics generates predictions regarding the patient population.

Conversely, `true' population approaches study the whole popu-

lation at once, without first needing to examine the individuals.

Despite the widespread use of the STS method, it presents

several disadvantages. STS studies are usually conducted in a

small number of experimental individuals (usually healthy and

with average demographic features) over a short period of time

(often after single dose administration). On account of this, the

mean parameter estimates obtained may not be representative of

the patient population that will receive the drug to treat a

particular clinical condition. STS studies require rigid experi-

mental designs and extensive sampling per subject to allow for

an accurate characterization of each individual's pharmacoki-

netic profile (the minimum amount of samples needed per

individual is based in the number of parameters to be estimated).

An insufficient number of samples per individual may lead to

poor parameter estimates because identification of the pharma-

cokinetic model is not possible for a small number of individual

measurements (even five samples per patient may yield poor

estimates) (Kataria et al., 1994). When these poor individual

estimates are combined in the second stage of the process, biased
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population estimates result. The main disadvantage of the STS

method is that although it is generally adequate for obtaining

mean estimates, it is not adequate for characterizing random

effects (variance structure) which influence the pharmacokinetic

profile of a population. This method does not provide accurate

estimates of the interindividual and intraindividual variability in

drug disposition because it pools together both sources of

variability in a common variance. Even if the study is conducted

with diseased individuals (provided enough data are available)

and in a further step the pharmacokinetic parameter estimates

are linked to disease status, the variance estimates will be

inaccurate. Consequently, when pharmacokinetic parameter

estimates obtained from a small number of individuals with

the STS method are used to develop generalized dosage regimens,

there may be a considerable risk of toxicity or lack of efficacy.

This is specially true for drugs with a narrow therapeutic index

and for patient subpopulations representing extreme demo-

graphic or health status categories (e.g. very young or very old,

renal or hepatic impairment, etc.). To achieve the desired serum

concentrations, the initial dosage regimen should reflect the

likely requirements of individuals as determined by measurable

clinical characteristics.

The main strength of the STS approach resides in its

straightforwardness, experimental nature and the availability

of user-friendly software that makes the process of fitting models

to the data relatively simple. When a sufficient number of

samples per individual are obtained, each individual's pharma-

cokinetic profile may be fully characterized. Consequently, in

such `data rich' situations, this method provides reliable

individual estimates. Unfortunately, `data rich' situations are

not commonly encountered in the clinical setting. Obtaining

numerous blood samples from patients is almost always a

daunting task due to ethical and practical considerations

(specially in very young, very old, or very ill patients). Studying

the pharmacokinetic characteristics of patients with different

degrees of disease arising from very different demographic sub-

populations may result in unbalanced data arising from different

data collection designs and obtained with analytical techniques

of varied qualities and limits of detection. Such data are usually

not sufficient to fully characterize each individual's pharmaco-

kinetic profile. In this type of situation (by far the most common

in the clinical setting), the traditional approach to estimating

pharmacokinetic parameters would fail to provide reliable

estimates of both the average parameter values in different

patient subpopulations and its variability among and within

individuals. It is in these scenarios, very common in veterinary

medicine, where the `true' population approaches with the

ability to evaluate the whole population as a unit, using less than

perfect data, become most valuable (Sheiner et al., 1977).

`True' population pharmacokinetic methods: parametric and

nonparametric

What is usually referred to as population pharmacokinetic

methods are a series of techniques that allow the study of the

pharmacokinetic characteristics of a drug in a target population

using sparse data obtained from the sampling of a few (in some

cases only one) plasma concentrations per individual (from a

large population) for routine clinical monitoring. Implementing

this methodology not only allows one to estimate average values

of pharmacokinetic parameters in a population with determined

clinical features, but also provides information about the inter

and intraindividual variability of those parameters and (depend-

ing on the specific method) may even allow one to estimate the

joint probability distribution function of the pharmacokinetic

parameters and covariates. The joint probability distribution

reflects the frequency distribution associated with two variables,

and consequently provides an indication of the variance of these

two variables and their degree of correlation. In the typical

clinical setting, there are not enough datapoints per subject to

fully characterize each individual's pharmacokinetic profile. This

limitation is overcome by studying a larger number (50±500 in

most published studies) of clinical patients with each of them

being sparsely sampled (1±4 samples per individual). Given the

sampling and design restrictions, population pharmacokinetics

methods were conceived to analyse observational (e.g. data not

collected according to a rigid predetermined experimental

design) rather than experimental data. In order to handle this

type of data, population methods require an a priori thorough

specification of the pharmacostatistical model. This includes

specification of both the structural and regression pharma-

cokinetic models (containing the fixed effects), as well as a

complete description of the statistical model (containing the

random effects).

The object of a study is not the individual but the population

as a whole. This makes population pharmacokinetic studies

more representative of the population to which the drug is

targeted. One of the most advantageous characteristics of

population pharmacokinetic studies is that they can quantita-

tively express the influence of clinical conditions on the average

pharmacokinetic characteristics of the population. Hence, this

methodology allows one to explore possible relationships

between pharmacokinetics and clinical features of patient

populations. The second advantage of this type of methodology

is that it provides estimates of the interindividual and intraindivi-

dual (residual) variability of the estimated pharmacokinetic

parameters (parametric methods) or allows the direct estimation

of the joint probability density function of the pharmacokinetic

parameters in the population (nonparametric methods). This

information allows for predictions in individuals according to

their clinical features and further provides information about the

degree of confidence that can be placed on those predictions.

Additionally, (as will be later reviewed) these estimates can be

included as a priori information in Bayesian forecasting

techniques to further improve individual predictions.

In essence, there are three main components in any

population assessment:

(a) Structural model - How drug moves in the body.

Depending on the type of procedure, a structural model may

or maybe not needed.

(b) Modelling of residuals.

(c) Estimation of the joint probability density function.
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There are two general types of population pharmacokinetic

methods, known as parametric and nonparametric. A third

approach has been described (Davidian & Gallant, 1992b) that is

midway between these two methods. It is called the semi-non-

parametric or smoothed nonparametric approach. The differ-

ences between these methods can be summarized as follows:

Parametric methods: The pharmacokinetic variables and the

error terms are assumed to come from a known distribution

(normal or log-normal) with unknown parameters. Parameter

estimation is restricted to some structural model. Confidence

intervals and standard errors are based on parametric methods.

These methods, as implemented by the computer program

NONMEM can also handle some multimodal distributions if they

are accounted for in the variance model.

Semi-nonparametric methods: Unlike parametric procedures,

parameter estimation is not restricted to some structural model,

and alternative fitting procedures (e.g. spline fits) can be

employed. However, the estimate of uncertainty about these

estimates is confined to parametric procedures.

Nonparametric methods: In this case, restrictions regarding

structural models and distribution of inter and intraindividual

error terms are relaxed. Accordingly, the uncertainty about

parameter estimates are based upon nonparametric procedures,

such as nonparametric confidence intervals. These methods

compute the joint probability density function of the pharmaco-

kinetic parameters, which measures the variance of two

parameters and how well they are correlated.

Selecting the most appropriate method depends on the original

assumptions about the underlying distribution. Parametric

methods are usually easier to implement from a modelling

standpoint, but lack the ability to identify situations of evident

deviation from normality in the distribution of the pharmaco-

kinetic parameters in the population, such as when bimodal

(typical of drug polymorphisms) or very skewed distribu-

tions occur.

Parametric methods

Nonlinear mixed effects modelling (NONMEM)

This is the most representative parametric procedure and the

first true population pharmacokinetics method ever to be

developed and utilized in clinical medicine. It is implemented

through a computer program known as NONMEM (Beal &

Sheiner, 1980, 1989; Beal, 1984a, b). In this modelling strategy,

the total residual variability is explained in terms of fixed and

random effects (Boeckmann et al., 1994). This requires fitting a

fully specified pharmacostatistical model to the population data

from which estimates of the average population values of

pharmacokinetic parameters and their variances as well as the

residual variance are obtained. This is accomplished by using the

method of extended least squares (ELS), as applied to a nonlinear

mixed-effect statistical model (Sheiner & Beal, 1984). This

method stems from the ordinary least squares method. In

ordinary least squares, as applied to a subject's data, parameter

values are sought that minimize the sum of squared deviations of

the observations. The variances of the individual observations

are assumed to be equal (homoscedasticity). If these variances

differ but are known, then weighted least squares techniques can

be used. When the differing variances are unknown, the ELS

method can be used. This method models the variance as a

function of the pharmacokinetic parameters, a vector of

independent variables (fixed effects), and some random-effect

parameters (inter and intraindividual). While the advantages of

this method are many, there are also some important drawbacks

to it. First, all data are fit to a single set of parameters, which

may not be appropriate for all the individuals and some degree of

model misspecification may arise from it. Second, repeated blood

measures in an individual are treated as independent observa-

tions, which they are not. Finally, there may be some degree of

confounding of the variance terms if there is not enough data to

characterize them (i.e. too few Z's).
For illustrative purposes, the full pharmacostatistical model

can be divided into pharmacokinetic and statistical components

(Fig. 2). In turn, the pharmacokinetic model can be further

subdivided into structural and regression models, while the

statistical model contains the two types of random effects,

namely, inter and intraindividual.

Fixed effects are a series of variables and constants (e.g. dose,

time, age, weight, serum creatinine, etc.) assumed to be meas-

ured without error. They are linked by a structural model (e.g.

Cp=D/Vd6e7Cl/Vd6t) with the dependent variable (plasma

concentration) and by a regression model with the pharmaco-

kinetic parameters (e.g. clearance= f (creatinine clearance) and

volume of distribution= f (age)). The fixed effects of the struct-

ural model are dose and time. The proportionality constants

(fixed-effect parameters) of the structural model are the pharma-

cokinetic parameters (e.g. clearance and volume of distribution).

For example, for the one compartment open model with intra-

venous (i.v.) administration, the following expression applies:

Cp=D/Vd6e7Cl/Vd6t eqn 1

where Cp is the observation (dependent variable), D is the dose, t

is the time at which the observation takes place and Cl and Vd

are, respectively, clearance and volume of distribution. Cl and Vd

quantify the influence of the fixed effects (dose and time) on the

dependent variable of the structural model.

This expression can be generalized as:

Cpij= f (pj, Dj, tij) eqn 2

where Cpij is the ith serum concentration in the jth individual, pj
are the average population pharmacokinetic parameters (Clj, Vcj,

etc.), tij is the time of the ith measurement in the jth individual,

Dj is the dosing history in the jth individual and f is the struc-

tural model.

If, in turn, the pharmacokinetic parameters (pj) can be further

explained in terms of patient characteristics (including age,

weight, serum creatinine, gender, breed), then a regression

model is implemented in which the pharmacokinetic parameters

become the dependent variables, the patient characteristics are

the fixed effects and a set of fixed-effect parameters (yz) quantify
the relationship between patient characteristics and pharmaco-

kinetic parameters. NONMEM computes estimates of the fixed-
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effect parameters of the regression model. The algebraic form of

the equations of the regression model (excluding the random

effects) is as follows:

Clavg= y1 + (y2 . Cov1) + (y3 . Cov2)

+ . . . . . . + (yn . Covn±1) eqn 3

Vdavg= yn+1 + (yn+2
. Covn) + (yn+3

. Covn+1)

+ . . . . . . + (yz . Covz±2) eqn 4

where Covz represent the fixed effects (covariates) and yz are the

fixed-effect parameters. The intercepts of each regression equation

represent the amount of the pharmacokinetic parameter value

that is not due to the effect of the concomitant variables (i.e. each

covariate value equal zero, for a linear relationship). For example,

the term o1 in Fig. 2 represents the population average value of

the nonrenal clearance. In the case that no concomitant variable

is included in the model for a particular pharmacokinetic

parameter, the latter becomes the fixed-effect parameter, not

only of the structural but of the regression model as well (i.e.

y1=Clavg). For simplicity of exposition, the relationships depicted

above are linear, but other forms of relationships are also allowed

(multiplicative, saturation) (Boeckmann et al., 1994). So far we

have discussed the relationships between average population

pharmacokinetic parameters of the structural model and fixed

effects (clinical variables), without considering any source of

unknown variability either between or within individuals. This

unknown variability is what is referred to as random effects.

Random effects are the unknown quantities that arise from a

probability distribution whose shape is assumed in NONMEM to

be normal or log-normal (Grasela & Sheiner, 1991). There are

two kinds of random effects, namely, interindividual random

effects and intraindividual random effects. Interindividual ran-

dom effects are associated with the pharmacokinetic parameters

of the structural model (Cl, Vd) and reflect the between-subject

variability in drug disposition. Each individual (j) has a

particular value for their pharmacokinetic parameters that will

differ from the average population value by an unknown

quantity. This unknown quantity is assumed to arise from a

normal or log-normal probability distribution, with a mean of

zero and a certain variance o2 that is estimated by NONMEM.

The interindividual random variable is represented in NONMEM

by the Greek letter ETA (Z) with a subscript relative to the

pharmacokinetic parameter with which it is associated. The

relationship between the random variable and the pharmacoki-

netic parameter is given by the statistical model.

For example:

Clj=Clavg + ZClj
eqn 5

Vdj=Vdavg + ZVdj
eqn 6

where Clj and Vdj represent the clearance and volume of

distribution, respectively, in the jth individual, Clavg and Vdavg
are the population averages for clearance and volume of

distribution, and ZClj
and ZVdj

represent the deviations of the

individual clearance and volume of distribution, respectively,

from their population averages for the jth subject. The error

model represented here has an additive form, but other types of

models are also available (e.g. multiplicative: Vdj=Vdavg6(1 +

ZVdj
), or exponential: Vdj=Vdavg6 eVdj, etc.). In turn, we must

also define the distribution of the Z's within the population

(assuming mean=0 and variance=o2).

Intraindividual random effects represent the residual varia-

bility and arises from model misspecification (e.g. fitting a one-

Fig. 2. Diagram of the different components of

the pharmacostatistical model for a drug

administered as an i.v. single dose.

Pharmacokinetics are described by a one

compartment open model with clearance and

volume of distribution linearly correlated to

creatinine clearance and age, respectively. The

fixed effects (dose, time) are part of the

structural model. The fixed-effect parameters of

this model (pharmacokinetic parameters, Cl and

Vd) can be further broken down and explained

in terms of another set of fixed effects (patient

characteristics) through the regression model.

The statistical model accounts for the influence

of the interindividual (Z) and intraindividual (e)
random variables. The random-effect

parameters (quantifying the influence of Z and e
on the model) are s2, o2

Cl and o2
Vd

and

correspond to the variances of the

intraindividual, and interindividual (Cl and Vd)

random effects.

Population pharmacokinetics in veterinary medicine 173

#1998 Blackwell Science Ltd, J. vet. Pharmacol. Therap. 21, 167±189



compartment model to data that would be better described by a

two-compartment model), analytical assay error, and time

variation in pharmacokinetic parameters within the same

individual. Formally expressed, the intraindividual random

variable represents the deviation of the observed concentration

from the value that would be expected were the true individual

pharmacokinetic parameters known. Algebraically expressed:

Cij=Cij,true + eij eqn 7

where Cij is the observed concentration in individual j at time i,

Cij,true is the true concentration for individual j at time i, and e is
the residual random error or difference between observation and

true value for individual j at time i. As in the case of the

interindividual random effect, the form of this relationship may

be other than additive. The random variable e is assumed to arise

from a normal or log-normal probability distribution with mean

zero and variance s2. NONMEM computes estimates of the vari-

ances of the interindividual and intraindividual random effects,

namely, o2
Cl, o

2
Vd
and s2. Figure 3 represents the partitioning of

the total residual variability that takes place with NONMEM.

The difference between the measured and predicted drug

concentrations can be dissected into two components. First,

residual variability, or the difference between the observed

plasma concentration and the true concentration (expected

concentration if the true pharmacokinetic parameter values of

the individual were known). Second, interindividual variability,

or the difference between expected concentrations using the true

individual pharmacokinetic parameters and those expected using

the pharmacokinetic parameter values estimated by the model.

If we recall the two main questions (formulated in an earlier

paragraph) that we have in mind when conducting a population

pharmacokinetic study, it is easy to see now how NONMEM

addresses these. The pharmacokinetic model responds to the first

question, i.e. the determination of the average pharmacokinetic

parameter values in a population with determined values of a

series of physiological functions upon which the pharmacoki-

netic parameters depend. The statistical model responds to the

second question, i.e. the degree of uncertainty about which the

pharmacokinetic parameters are estimated in an individual of

known physiological functions.

NONMEM uses a variety of algorithms related to nonlinear

regression and matrix algebra to obtain estimates of the fixed-

effect parameters, the inter and intraindividual random-effect

parameters (variances), and the standard errors of all these

parameter estimates. The covariance and inverse covariance

matrices are also computed to show if parameter values vary

together. If the parameters of the model are not independent of

each other the model should be reassessed. The correlation

matrix of the parameter estimates is computed as an additional

indication of the adequacy of the model, as highly correlated

parameter estimates are indicative of model overparameterisa-

tion. Diverse scatterplots which show distribution of residuals for

different levels of a covariate are also obtained. These kind of

plots can be used to assess the relative importance of including

the covariate under evaluation in the regression model. Other

plots, such as that of predicted vs. observed concentrations can

also provide hints as to the goodness of fit of the models tested.

Finally, the minimum value of the ELS objective function is

computed that will be used to compare different models during

the search for the most adequate one.

The model building procedure (structural and regression

model) is conducted in a stepwise fashion. The statistical

significance of the reduction in the minimum value of the

objective function (MVOF), and the decrease of the inter and

intraindividual variability when adding a new covariate to the

model (Boeckmann et al., 1994) are assessed at every step. Each

time NONMEM runs a model, it minimizes the value of the

extended least squares (ELS) objective function. The minimum

value of the ELS function is an indicator of the goodness of fit of

the model. This value can be used to statistically compare full-

reduced regression pairs. The full model is that whence the

parameter of the added covariate is estimated. Alternatively, the

reduced model is that whence the parameter in question is fixed

to the null value. The difference between the MVOF of a full

model and a reduced model approximates a chi-square (w2)
distribution with degrees of freedom equal to the difference in the

Fig. 3. Integration of pharmacokinetic model

and statistical model in the prediction model.

The total residual variability is partitioned with

NONMEM in terms of the fixed and the random

effects. The difference between the observed and

the predicted drug concentrations can be

dissected into two components. First, true

residual variability (Cp±f(p)) arises from the

difference between the observed plasma

concentration and the true concentration

(expected concentration if the true values of the

individual PK parameters are known). Second,

interindividual variability (f(p)±f(p')) arises from
the difference between expected concentrations

using the true individual pharmacokinetic

parameters and those expected using the values

of pharmacokinetic parameters estimated by the

regression model. NONMEM computes estimates

of the pharmacokinetic model parameters and

of the variances of the random variables.

Modelling Residual Variability
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number of parameters between the full and the reduced model

(q). Its statistical significance can be determined by comparing

the difference between both MVOF values, with the correspon-

dent value of the w2 distribution for q degrees of freedom.

Nonparametric methods

Nonparametric methods provide the opportunity for analysis

without implicit assumptions as to the population distribution of

the random error terms for interindividual and residual

variability. This allows one to visualize the data and determine

the best function with which to represent the observed

distribution. Due to this feature, nonparametric methods can

handle bi- or multimodal populations, thereby discovering

unsuspected clusters of patients such as that which occurs in

genetic polymorphisms (e.g. slow and fast acetylators).

These techniques are based on the general method known as

maximum likelihood estimation (Jennrich & Sampson, 1976). This

method, as applied to regression, aims at identifying the relation-

ships between outcome and independent variables that are the

most reasonable. In other words, its objective is to obtain para-

meter values that provide the maximum probability of producing

a sample in the neighbourhood of the one observed. The

`maximum likelihood' represents a family of statistical procedures

used to determine when further iterations are no longer needed to

improve the fit between the observed vs. the predicted values.

Nonparametric methods compute the nonparametric maximum

likelihood estimate of the unknown population density function

(Mallet et al., 1988). The differences between the two main types

of nonparametric methods reside in the type of algorithm that

they utilize. As for the relationships between covariates and

structural parameters, nonparametric methods estimate the joint

distribution of the parameters (both pharmacokinetic parameters

and fixed-effect parameters that describe the relationships

between pharmacokinetic parameters and covariates).

Nonparametric maximum likelihood (NPML)

This algorithm was first described by Mallet (1986) who showed

that the joint probability distribution of parameter values in a

population model is discrete as opposed to the continuous nature

of a normally distributed parameter. Accordingly, it can be

described by some frequency distribution (Jelliffe et al., 1994).

NPML computes the joint probability density function of the

parameter estimates. A complete discussion of the mathematical

basis of this method is beyond the scope of this paper. However,

the general features of the algorithm and an example with

simulated data, have been presented elsewhere (Mallet, 1986).

NPML states the problem of parameter estimation in terms of

the probability of obtaining data similar to that actually

observed. It relies on the maximum likelihood principle as

applied to the estimation of pharmacokinetic parameters. In

other words, given a set of unknown terms and a set of data

related to unknowns, the best estimate of the unknowns consists

of the values that render the set of data most probable (Mallet et

al., 1988). The most familiar situation is when the unknowns

are the pharmacokinetic parameters of an individual and the set

of data is the individual series of observations. The distribution of

the pharmacokinetic parameters in the population can also be

unknown in which case the data are the array of such series of

observations within a sample of individuals. This method was

first applied to the estimation of population pharmacokinetic

parameters in patients treated with cyclosporine. The study

included plasma levels obtained in 188 bone marrow transplant

patients after intravenous infusion. The parameter estimates

computed with the NPML method (both with 7.9 and 3

datapoints per individual) were in agreement with the results

obtained with the STS method with a full set of data per

individual. Systemic clearance and volume of distribution at

steady-state were estimated without bias, although the volume

of distribution of the central compartment and to a lesser extent

the distribution and elimination half-lives were slightly biased.

Since then, many studies have been published using this

methodology. It has probably not been adopted more broadly

because of the lack of user-friendly software, and the subsequent

development of other nonparametric algorithms. Currently,

software has been developed to run this algorithm in a PC

Windows1 environment. In general, nonparametric methods

require more mathematical sophistication than the parametric

methods, but they allow appropriate parameter estimates to be

computed when departure from normality in the distribution of

pharmacokinetic parameters in the population takes place.

Nonparametric expectation maximization (NPEM)

This nonparametric estimator uses an iterative expectation

maximization (EM) algorithm with steps of both expectation

and maximization. The numerical fundamentals of the method

has been published elsewhere (Schumitzky, 1991). This algo-

rithm computes the entire joint probability density function

(PDF) of the parameters. During the initial phases of the

estimation process, a continuous PDF is calculated. The

population fit of the PDF improves with each iteration. With

progressive iterations, the spikes of the joint density become

narrower. At its limits, discrete distributions are obtained,

approaching the Mallet solution discussed above (convergence).

Figure 4 depicts a graphical example of the joint PDF for a

patient population. The joint PDF is projected as tridimensional

spikes, the location and height of which represent the estimated

values and probabilities of the pharmacokinetic parameters.

Together with the joint probability density it also computes

individual density functions for each parameter. This algorithm

can operate with a single datapoint per patient and may be

executed on a PC. It has been integrated as a segment of the

USC*PACK software package (Jelliffe et al., 1995). This software

can handle one-, two- and three-compartment models with

repeated oral and intravenous dosing, with a total of seven

parameters being studied. Different studies (Dodge et al., 1991;

Kisor et al., 1992; Gilman et al., 1993) have shown similar

results when either a nonparametric method or the STS method

were used to model blood sample data from populations with

normal distribution of the pharmacokinetic parameters. They
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also produce estimates of the means, standard deviations, modes,

medians, skewness, kurtosis, and correlations and covariances

between parameters.

Semi-nonparametric methods:

Smooth nonparametric maximum likelihood (SNP)

This is a semi-nonparametric method, proposed for use in

population pharmacokinetic analysis by Davidian and Gallant,

(1992a). This modelling strategy is particularly relevant for

population data that can be described with nonlinear mixed

effects model (MEM) strategies. For this type of data, the SNP

method simultaneously estimates the fixed effects (by maximum

likelihood principles) and the entire random effects density. A

description of the numerical basis of the method and an example

of its application to the population pharmacokinetic analysis of

quinidine in 136 patients has been published elsewhere

(Davidian & Gallant, 1992b).

VALIDATION OF POPULATION PHARMACOKINETIC

MODELS

The fact that many of the population pharmacokinetic studies

that are conducted have an observational rather than an

experimental nature has led to the necessity of establishing

appropriate validation methods, to assure that the parameter

estimates obtained in a population pharmacokinetics study are

extrapolatable to the general population, and that the results are

reasonable and independent of the analyst. Validation proce-

dures are intended to assess how well a population model

(obtained from a `study' or an `index' population) describes a set

of data (`validation' set) that has not been used to develop the

model itself. Whether validation of the population study is

accomplished or not depends on the objective of the analysis.

When a population model is developed for dosage recommenda-

tion, it must be adequately validated. Alternatively, when

population models are developed for explaining variability or

for providing some descriptive labelling information, validation

may not be required.

It is beyond the scope of this review to discuss in detail the

different validation methods that have been proposed, and the

statistics involved in each of them. Selection of the validation

method should be justified according to the ultimate goal of the

population study. The issue of statistical validation is still open to

discussion, and we will only present a brief description of some of

the most commonly proposed alternatives. The interested reader

should refer to the appropriate literature for more comprehensive

information on each particular method.

Types of validation

The validation of a population model consists of the assessment

of the stability and/or predictive performance of a population

model on a `validation' data set, different from that used to

develop the model. Depending on the availability of validation

data, we may distinguish two types of validation, namely,

external and internal. In external validation, the validation set

consists of an entirely new data set obtained from another study.

Alternatively, internal methods use the original data set to derive

both the `index' and `validation' data sets or use resampling

techniques to validate the developed model. Internal validation

techniques include data-splitting (Roecker, 1991), and resam-

pling techniques such as cross-validation (Efron, 1983) and

bootstrapping (Ette, 1997).

Data-splitting partitions the available dataset in two portions,

the index data set (two thirds) and the validation data set (one

third). As the predictive accuracy of the model is dependent on

the sample size, it is recommended that after validation of the

population model both sets are pooled together and the final

model parameters are estimated using this overall data set.

Cross-validation consists of repeated data-splitting.

Bootstrapping consists of a resampling procedure that allows

the evaluation of the stability and performance of a population

model by repeatedly fitting the model to the bootstrap samples.

The bootstrap samples consist of a large number (e.g. 200) of

subsample replicates obtained by resampling the original data

with replacement. Subsamples are distributed similar to the

original sample and consequently the statistical inference of

interest can be made as for the original sample. This method is

computer-intensive and is an adequate alternative to external

validation methods when original sample sizes are too small.

Methods of validation

Standardized prediction errors

This is one of the first validation methods ever proposed for

population studies (Vozeh et al., 1990). This method computes

Fig. 4. Example of the three-dimensional plot of the joint PDF in a

population of patients treated with a drug. K=elimination rate constant

(range 0±0.02 h71). V=Volume of distribution (range 0±3.0 L/kg).

Each spike represents the probability that a subject will have V= x and

K= y. If all true values for the population were known this would be

reduced to a scatterplot with a dot per individual (or a spike in cases of

two individuals with the same values of V and K). The number of dots

would never exceed the number of subjects.
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the standardized mean prediction error (SMPE) and the variance

for each patient. A t-test (actually a z-test) is performed to assess

whether the average of SMPEj's across patients is different from

zero, i.e. whether the prediction is on the average biased.

Another t-test is conducted to test whether or not the model

describes adequately the variability in the validation data set

(within and between patients), by comparing the standard

deviation of SMPEj (computed across patients) to 1. Although

different population pharmacokinetic studies have used this

approach (Aarons et al., 1989; Fattinger et al., 1991), the

method has also received some criticisma regarding its inade-

quacy to test the latter hypothesis, the incorrect assumption of

lack of error in the estimates of population parameters (Anon,

1997), and the very idea that testing this hypothesis is

meaningful at all.

Concentration prediction error

This method (Sheiner & Beal, 1981a) is based on the prediction

error, which is the difference between the predicted and the

observed concentrations. This method assesses the predictive

performance of a population model by using the mean squared

prediction error (MSPE) as an indicator of precision, and the

mean prediction error (MPE) as an indicator of bias. This method

is inadequate when more than one observation is obtained per

subject, because in that case prediction errors are not

independent. Examples on the use of this approach for validation

purposes can be found in the literature (Maitre et al., 1988; Lee et

al., 1997; Schmitz et al., 1997).

Validation using model parameters

This method accomplishes validation with the parameters of the

model, hence avoiding the problems encountered in the previous

method (Bruno et al., 1996). Using the validation set, it assesses

both qualitatively and quantitatively the model predictions of

individual pharmacokinetic parameters, with or without covari-

ates, and calculates the precision and bias for the predictions.

Graphical approach

For NONMEM modelling, a graphical approacha to the validation

of a model may be initiated by plotting the model predicted vs.

observed concentrations in the validation set. This plot provides

one with a visual clue for the degree of agreement between

model predictions and validation data. It has been argued that in

judging this correlation from a clinical standpoint, rather than

from an statistical one, the graphical approach may provide as

much information, if not more, than is presented by standard

statistical comparison approaches. Plots of the residuals (ob-

served minus predicted concentrations) vs. some of the

covariates provide additional information on the validity of the

population predictions. Residuals should be conceptually viewed

as the prediction error for every individual in the study. A plot of

the residuals vs. age may provide an indication of the clinical

adequacy of the model for different age groups. Such plots could

uncover `age clusters' for which the model fits the validation

data with less accuracy and/or precision.

Weighted residuals can also be useful for validation purposes.

Weighted residuals are obtained by normalizing the residuals by

the standard deviation of the model. Use of weighted residuals is

a potential source of bias if inappropriate weighting schemes are

used. In computer programs such as NONMEM, the weighted

residuals consist of the residuals expressed in population

standard deviation units. Consequently, a plot of the weighted

residuals vs. the individual patient identification number (ID)

can be useful to assess whether the residuals follow the

description established for them under the population model. If

the model affords an appropriate description of the validation

data, then the weighted residuals should be homogeneously

scattered about the zero line on the weighted residuals axis.

Similarly, plots of weighted residuals vs. some of the covariates

included in the model (e.g. weight, breed, creatinine clearance,

etc.) may uncover situations in which the influence of the

covariate has not been adequately modelled. If a trend or lack of

homogeneity can be observed in a plot of weighted residuals vs.

the covariate, instead of a homogeneous scatter, this indicates

that the model is not describing the variability adequately. In

this case some changes are necessary regarding the relationship

between the covariate and the pharmacokinetic parameter or

parameters in the population model. Examples of these plots are

presented in the next section (NONMEM simulation). Another

plot suggested to be useful to examine the closeness of

predictions to observations is that of the data vs. the covariate

superimposed on a plot of predicted concentrations vs. the

covariate (Fig. 5). These plots depict differences between

predictions and observations, and clinically may be of interest

to know whether these differences are within the margin of error

described by the population model. Other sets of validation plots

have been proposed that are applicable to population models

obtained with NONMEM by means of Bayesian estimationa.

AN EXAMPLE OF PARAMETRIC MODELLING:

NONMEM SIMULATION

To illustrate the general procedure of building population

models, a simple population pharmacokinetic analysis has been

conducted with NONMEM on a simulated population dataset

consisting of 100 young dogs. A certain drug was administered

to all the animals as a single i.v. bolus dose. Doses ranged

between 1 and 2 g. An average of 5.3 samples were obtained per

individual and the sampling times ranged between 1 and 38 h

postadministration. The simulated data was parameterized so

that the covariates age, weight and creatinine clearance were

linearly correlated to the pharmacokinetic parameters (volume

of distribution and clearance). The values of these covariates for

each individual were simulated according to a lognormal

distribution. Age ranged between 0.3 and 7.2 months, weight

ranged between 0.2 and 3.8 kg, and creatinine clearance ranged

between 10 and 125 mL/min. The statistical structure for

aValidation of a Population Model. Comments by Dr Stuart Beal in the

NONMEN Discussion List on the World Wide Web. NONMEN Topic 6.

1994.
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interindividual and intraindividual random effect was modelled

according to a proportional error model (constant coefficient of

variation). For simplicity of exposition, a 1-compartment model

was adopted. In our simulated data, clearance was linearly

related to weight and creatinine clearance, and volume of

distribution was linearly related to age. Figure 6 shows the

concentration-time profile of all the population plasma samples

(normalized by dose). As we can see, the interindividual

variability for the simulated drug disposition is quite high at

almost every sampling time.

Initially, the simplest pharmacostatistical model (minimal

model) was fitted to the data. This model consisted of a 1-

compartment structural model in which clearance and volume

of distribution were average population values not linked to any

covariate or clinical variable. Consequently, the full pharmacos-

tatistical model was:

Structural model: Cp=Co6 e7kt

Regression model: Clavg=f1

Regression model: Vdavg=f2

Statistical model: Clj=Clavg6 (1 + Z1) (interindividual)

Regression model: Vdj=Vdavg6 (1 + Z2) (interindividual)

Fig. 5. A plot of the observed

concentrations vs. a covariate of the

model superimposed in another of

the predicted concentrations vs. the

same covariate, may reveal clinically

important differences between

predictions and observations, that

are beyond the magnitude of error

described by the model.

Fig. 6. The plot of concentration

(normalized by dose) vs. time for all

the individuals reveals a high degree

of variability in disposition.
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Regression model: Cpij=F6 (1 + e1) (intraindividual)

where Cp is the general expression for the observed concentra-

tion at time t, Co is the initial concentration, k is the elimination

rate constant for the one-compartment model (Cl/Vd), Clavg and

Vdavg are the average population drug clearance and volume of

distribution, respectively, f1 and f2 are the estimates of Clavg
and Vdavg, respectively, computed by NONMEM, (1 + Z1) and (1

+ Z2) represent the interindividual random variable terms, F is

the prediction of Cpij (ith time and jth individual) and (1 + e1)
represents the intraindividual random error (residual).

Figure 7a depicts the predicted vs. observed concentrations for

the initial model (no relationship with clinical variables). This

model estimates average values of Cl and Vd for the whole

population without linking the pharmacokinetic parameters to

any concomitant variable. This would be close to the results

obtained by a traditional pharmacokinetic analysis with `rich'

data. The scatter of the datapoints is noticeable, especially for the

higher observed values of drug concentration. A plot of the

weighted residuals (weighted residuals are the observations

minus the predictions expressed in units of population standard

deviation) vs. the observed concentrations (Fig. 7b) indicates

that the simple average population model fails to predict the

plasma concentration values with the same degree of accuracy

and precision for all the different levels of concentration. The

lowest concentrations have the most negative residuals while the

highest concentrations have the most positive. The MVOF for

this model was 3453. The interindividual coefficients of

variation for Cl and Vd were 39% and 30%, respectively. The

intraindividual (residual) coefficient of variation for the initial

model was 26%. Once the initial model is computed, the first step

is to study potential relationships between the pharmacokinetic

parameters and the covariates (clinical or physiological features)

that are suspected to influence drug disposition. There are

different procedures to study these relationships. One of the most

common consists of studying the plots of residuals and weighted

residuals of the initial model vs. the potential covariates of the

model. A clear pattern in the scatter of the residuals in this plot

would indicate a likely relationship between the covariate and

some (or all) pharmacokinetic parameters. Even a simple lack of

homogeneity in the scatter of the residuals may be indicative of

the necessity to account for that particular covariate in the

regression model. Accordingly, Fig. 7c±e shows the plots of

weighted residuals vs. body weight, creatinine clearance and

age, respectively. As can be seen in Fig. 7c there is a slight

relationship between the sign of the residuals and patient body

weight. The subjects with the largest weights tend to have the

most negative residuals (predictions larger than observations)

while those with lower weights show the opposite trend. An

explanation for this effect is that one (or both) pharmacokinetic

parameters may increase with weight. If weight is not accounted

for in this model, the predictions are too low for the smaller

animals and too high for the larger ones. Figure 7d does not

depict a potential relationship as clearly as did Fig. 7c.

Nonetheless the scatter of the residuals in Fig. 7d is far from

homogeneous, and it is worthwhile to explore potential relation-

ships between this covariate and the pharmacokinetic para-

meters. Figure 7e shows a clear pattern in the residuals when

confronted with age. The magnitude of residuals (both negative

and positive) seems to decrease with the age of the individuals.

This may indicate that the average pharmacokinetic parameter

values estimated by this model may be more adequate to describe

the disposition of the drug in the oldest segments of the study

population. Consequently, the covariate age should be included

in the predictive model. In order to explore whether accounting

for these clinical variables improves the fit, successive regression

models would be run in which the different covariates are added

in a stepwise fashion, statistically testing at every step whether

Fig. 7. (a) The plot of predicted vs.

observed concentrations for the

initial model reveals a considerable

lack of precision in the predictions. A

population pharmacokinetic model

that does not account for patient

characteristics will compute average

values of pharmacokinetic

parameters across the population. If

the interindividual variability in

disposition is high, the predictions

derived from this model will be very

imprecise.
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the new covariate significantly improves the model or not (as

mentioned earlier, the tests are conducted by assessing the

statistical significance of the difference in the MVOF between the

`full' and the `reduced' model).

Different models were tested following a stepwise procedure.

For simplicity of exposition we will skip a detailed description of

the model building procedure. In the final model average

clearance was a linear function of weight and creatinine clear-

ance, and average volume of distribution was a linear function of

age. The complete model is expressed as:

Structural model: Cp=Co6 e7k6t

Regression model: Clavg=f1 + (f26 WGT) + (f36 CCR)

Regression model: Vdavg=f4 + (f56 AGE)

Statistical model: Clj=Clavg6 (1 + Z1) (interindividual)

Regression model: Vdj=Vdavg6 (1 + Z2) (interindividual)

Regression model: Cpij=F6 (1 + e1) (intraindividual)

Table 1 summarizes the fixed-effect parameter and random-effect

Fig. 7. (b) The plot of weighted

residuals vs. observed concentrations

shows a lack of homogeneity in the

predictions. Lower concentrations

are usually overpredicted while high

concentrations are underpredicted.

Fig. 7. (c) The plot of residuals vs.

body weight shows a lack of

homogeneity in the scatter of the

residuals. This indicates that the

covariate body weight probably has

some type of correlation with

clearance and/or volume of

distribution.

Observed Concentration (mg/L)

R
e

si
d

u
a

ls
(m

g
/L

)

180 T. MartõÂn-JimeÂnez & J. E. Riviere

#1998 Blackwell Science Ltd, J. vet. Pharmacol. Therap. 21, 167±189



parameter estimated values for the different models. Note the

improvement in the MVOF value at each model building step (it

drops 2109 points from the initial to the final model). As was

previously mentioned this is a measure of goodness of fit. The

decrease in the value of the MVOF that takes place between the

reduced and full model is used to formally decide which model is

best. Note also the significant reduction in the estimates of

interindividual variability once the covariates weight, creatinine

clearance and age are included in the model. The coefficients of

variation for clearance and volume of distribution for the initial

model were 39% and 30%, respectively. The same coefficients for

the final model were 10% in both cases. This indicates that once

the covariates are included in the model there is less unexplained

interindividual variability. The residual variability was reduced

from 26% in the initial model to 7% in the final model.

Figure 8a depicts the plot of predicted vs. observed concentra-

tions for the final model. Note the evident improvement in the fit,

relative to the initial model (Fig. 7a). Figure 8b shows the plot of

weighted residuals vs. observed concentrations for the final

model. A comparison of this plot to its initial counterpart (Fig.

7b) shows that the scatter of the residuals is much more

homogeneous at all values of plasma concentration in the final

Fig. 7. (d) The plot of residuals vs.

creatinine clearance also shows a

certain lack of homogeneity that is

indicative of some possible influence

of this covariate (actually this is a

surrogate marker of renal function)

in the disposition of the drug.

Fig. 7. (e) The plot of residuals vs.

age shows a clear trend in the scatter

relative to the age of the individuals.

The predictions seem to be more

precise in the older segments of the

population. This suggests that the

inclusion of the variable age in the

regression model, correlated to one or

both pharmacokinetic parameters,

will improve the fit.
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model, than in the initial model. This indicates that the final

model does a much better job than the initial model at fitting to

the data at all levels of concentration. Figure 8c±e shows the

plots of weighted residuals vs. the covariates included in the final

model (body weight, creatinine clearance and age). Note (by

comparison to Fig. 7c±e, respectively) how the scatter of the

residuals is much more homogeneous and the magnitude

significantly reduced, when the aforementioned covariates are

accounted for in the predictive model.

This very simple example of a population pharmacokinetic

analysis illustrates the basic concepts and procedures involved in

building the predictive model using a parametric method for

population pharmacokinetics analysis. Much more sophisticated

models can be built to analyse complicated datasets in which

data collection design is lacking. Different types of error models

can be implemented according to the specific features of the

study dataset. As mentioned earlier, validation of the model is

always necessary in the case of observational studies. More in

depth information on the model building procedures for this and

other methods have been published elsewhere (Boeckman et al.,

1994; Ette & Ludden, 1995b).

APPLICATION OF POPULATION

PHARMACOKINETICS IN VETERINARY MEDICINE

Population pharmacokinetics strategies have been widely applied

in human therapeutics and clinical research of human drugs,

especially during the last decade. The potential benefits of applying

this methodology to veterinary medicine have been previously

discussed (Riviere, 1984, 1988) and a study has been recently

completed on the population pharmacokinetics of gentamicin in

horses using retrospective clinical data (MartõÂ n-JimeÂ nez et al.,

1998). The key results of this study are summarized in Table 2.

The potential for using population pharmacokinetic techniques in

different areas of veterinary therapeutics is therefore evident.

Table 1. Stepwise model build-up for the simulation with the summary statistics. Notice the statistically significant reduction in MVOF as new

covariates are added to the model. The random inter and intraindividual variability is also reduced when covariates are added to the model. The values

of the fixed-effect parameters for the initial and final models, respectively, were: y1=0.942, y2=6.8 (model 1). y1=0.0666, y2=0.38, y3=0.0029,

y4=0.769, y5=1.48 (model 4)

Model No. Pharmacostatistical model C.V. (%) Objective Compared

Cpij: (Coj6 e7kti)6 (1 + eij) Cl Vc Resid Function to Model P Value

1 Cl= y16 (1 + Z1) 39 30 26 3452 ±- P 5 0.0005

Vc= y26 (1 + Z2)

2 Cl= y16 (1 + Z1) 39 24 18 3116 1 P 5 0.0005

Vc= (y2 + y3 AGE)6 (1 + Z2)

3 Cl=(y1 + y2 WT)6 (1 + Z1) 15 11 8 1545 2 P 5 0.0005

Vc= (y3 + y4 AGE)6 (1 + Z2)

4 Cl=(y1 + y2 WT + y3 CCR)6 (1 + Z1) 10 10 7 1343 3 P 5 0.0005

Vc= (y4 + y5 AGE)6 (1 + Z2)

Fig. 8. (a) The plot of predicted vs.

observed concentrations for the final

model illustrates the dramatic

improvement in the precision and

accuracy of the predictions over

Fig. 6(a), once the covariates age,

weight and creatinine clearance are

accounted for in the model.
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Clinical use

Population pharmacokinetic modelling can be used in the

clinical setting in two ways. First, it can be utilized to design

dosage regimens for new individual patients or patient-clusters

according to their clinical features. Second, population models

can be used as prior information in Bayesian forecasting

methods to further improve the accuracy of the predictions in

a patient from which only a few plasma samples can be obtained.

When a drug is used to treat a pathologic condition in a

patient (human or animal), the first objective is to optimize the

dose for the individual patient. This is particularly the case when

the drug has a narrow therapeutic index and/or a large

interindividual variability in its disposition or effect. Variability

in therapeutic outcome can be partitioned into pharmacokinetic

and pharmacodynamic components. Consequently, pharmaco-

kinetic and pharmacodynamic variability in a population will

dictate how confidently the clinician will be able to administer

Fig. 8. (b) In contrast with Fig. 7(b),

the plot of weighted residuals vs.

observed concentrations for the final

model shows a more even scatter of

the residuals. This indicates that the

predictive performance of the model

is more homogeneous across all

levels of concentration.

Fig. 8. (c) The plot of residuals vs.

body weight shows homogeneous

distribution of the residuals. This

indicates that once the covariable

body weight is accounted for in the

regression model, the predictive

performance of the population model

is significantly improved.
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an average population dose to an individual subject. The

magnitude of this variability and the factors which contribute

to it are the critical issues in dealing with dose individualization.

When drugs exhibit a large variability in disposition across

individuals, poor correlation between plasma concentrations and

dose will exist. The consequence of this will depend on the

pharmacodynamic characteristics of the drug for both the

therapeutic and the toxic effects. By explaining part of this

variability in terms of a series of pathophysiological variables

(weight, age, renal function, etc.), dosage regimens can be

designed, using this additional clinical data, that correlate well

with serum concentrations for each particular subpopulation as

the residual variability is greatly reduced. If the inclusion of

pathophysiological variables in the model manages to reduce the

interindividual variability to a relatively small magnitude and

the pharmacodynamic variability is not large, we can design an

optimum dose for each of these subpopulations derived from

their average pharmacokinetic parameter estimated values. This

is specially valuable for subpopulations that are more prone to

deviate from the general population values (e.g. very young

Fig. 8. (d) The plot of residuals vs.

creatinine clearance shows a more

homogeneous scatter of the residuals,

as compared with that of Fig. 7(d).

This and the reduction in random

variability are evidence in favour of

including this covariate in the final

model. Creatinine clearance (and

consequently, renal clearance) seem

to have a significant influence on the

disposition of this drug.

Fig. 8. (e) Plot of residuals vs. age for

the final model. Note the dramatic

reduction in the magnitude of the

residuals and the disappearance of

specific trends, when compared with

the residual plot of Fig. 7(e).
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individuals, very old individuals, subjects with renal or hepatic

impaired functions).

The Bayesian approach to the estimation of pharmacokinetic

parameters in an individual takes advantage of both the prior

information derived from the population, as well as the scarce

information obtained from the actual patient treated with the

drug. First, a population model (accounting for patient clinical

conditions) is developed and validated. This model (prior

probability) is used to develop an initial dosage regimen. This

initial regimen will be based on the average population parameter

values of the subpopulation to which the patient belongs (for

example, 2-year-old beagle dogs with 13 kg of body weight and a

serum creatinine of 1.9). The model is reassessed (Bayesian

feedback) with new data obtained from a few blood samples from

the patient. Finally, the probability distribution of the individual

parameters is adjusted (posterior probability) in light of the

observed patient's plasma concentrations. Iterative fitting proce-

dures continue, selecting those values of individual pharmaco-

kinetic parameters (Bayesian posterior) that minimize the

Bayesian objective function (Rao, 1965; Sheiner et al., 1979):X �Ppop ÿ Pind�2
�2Ppop

�
X �Cobs ÿ Cind�2

�2Cobs
eqn 11

where Ppop and Pind represent the parameter values of the

population pharmacokinetic model and of the patient's indivi-

dualized model, respectively. Cobs and Cind represent the various

observed plasma drug concentrations and the estimates of those

concentrations made with the patients individualized pharma-

cokinetic model (for each observation), respectively. s2Ppop
represents the variance for the different population pharmaco-

kinetic parameter values. s2Cobs represents the variance of the

observed plasma concentrations. Different studies have deter-

mined the validity of this approach in making individualized

pharmacokinetic models of drugs in patients (Kisor et al., 1992;

Thomson & Whiting, 1992; Jelliffe et al., 1993) and have shown

how predictive performance is improved (future serum drug

concentrations) relative to the traditional methods of linear

regression (Hurst et al., 1990; Jelliffe et al., 1991), in particular

when the number of samples available from each patient is

small. As the number of individual samples increase, the

Bayesian solution approaches that obtained by the traditional

least squares method (Higuchi et al., 1988).

Amid the different methods of population analysis that use

Bayesian techniques is one called the Iterative two-stage method

(IT2S). This method uses the IT2S algorithm, that was first

proposed by PreÂ vost (1977) and later described by Steimer et al.

(1984). This method can use rich data, rich and sparse data, or

sparse data only, where rich and sparse refer to the number of

samples collected within any individual. In this method an initial

estimate of the pharmacokinetic (or pharmacodynamic) model is

derived by the user (average values of model parameters,

standard deviations of those values and model for residual

variance). This can be accomplished with data from the

literature or using a standard pharmacokinetic analysis (with

rich data). Using these initial estimates as prior information in a

Bayesian forecasting procedure, a maximum a posteriori Baye-

sian estimator is developed. This estimator allows one to obtain

the values of the pharmacokinetic parameters for each individual

subject, no matter whether they have rich or sparse data (stage

1). These individual parameter values are used to produce a

second population model based on their mean values and

standard deviations (stage 2). This second population model is

re-entered as prior information in a new Bayesian estimation

step and more accurate estimates of the individual parameters

are obtained. The process is repeated until stable population

parameter means and standard deviations are obtained accord-

ing to some convergence criterion (basically until the difference

between the new and old prior distributions is zero).

This method yields a description of the population (means of

pharmacokinetic parameters, variance and correlation, and the

residual variance) as well as individual estimates (point estimates

of pharmacokinetic parameters and covariance matrices) for

Table 2. Stepwise model build-up for the population pharmacokinetics of gentamicin in horses. In the optimum model, body weight is linearly

correlated to both clearance and volume of distribution, and serum creatinine is linearly correlated to clearance. Notice the decrease in the MVOF and

the intra and interindividual variability when new covariates are added to the model

Model Regression model Coefficient of variation (%) Compared

Cl Vc k12 k21 Res MVOF to model P Value

1 Cl= y16 (1 + Z1) 59 50 ±± ±± 17 733.3 1-Comp P 5 0.0005

Vc= y26 (1 + Z2)

2 Cl=(y16 (1 + Z1) 60 16 ±± ±± 17 684.8 1 P 5 0.0005

Vc= (y2 + y3 WT)6 (1 + Z2)

3 Cl=(y1 + y2 WT)6 (1 + Z1) 40 18 ±± ±± 16 583.1 2 P 5 0.0005

Vc= (y3 + y4 WT)6 (1 + Z2)

4 Cl=(y1 + y2 SCr)6 (1 + Z1) 58 40 ±± ±± 17 690.2 1 P 5 0.0005

Vc= y36 (1 + Z2)

5 Cl=(y1 + y2 SCr)6 (1 + Z1) 57 33 ±± ±± 17 683.4 4 P 5 0.01

Vc= (y3 + y4 Age)6 (1 + Z2)

6 Cl=(y1 + y2 SCr)6 (1 + Z1) 55 17 ±± ±± 16 653.1 4 P 5 0.0005

Vc= (y3 + y4 WT)6 (1 + Z2)

7 Cl=(y1 + y2 Scr + y4 WT)6 (1 + Z1) 24 16 ±± 38 13 433.7 3, 6 P 5 0.0005 (with both)

Vc= (y3 + y4 WT)6 (1 + Z2)
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each subject. This approach can be implemented with any kind

of software supporting Bayesian estimation and least-squares

regression. A computer program (Forrest et al., 1991a,b) using

this algorithm has been developed with modules of the ADAPT II

package of programs (D'Argenio & Schumitzky, 1979, 1997).

Production medicine

The use of population pharmacokinetic/pharmacodynamic

methods in food animals will most likely improve the conditions

of herd drug usage in the near future. The ability of these

methods to obtain valuable information from large populations

in which each individual is sparsely sampled seems ideal to

study drug therapeutics in food animals. Differences in drug

disposition across individuals could be related to disease

conditions, management practices, lactation status, or breed.

This know-ledge, together with a better assessment of the

sources and magnitude of variance will allow a more reason-

able use of drugs in these animals. Differences in disposition

can be related to individual characteristics and also to

subpopulation characteristics, such as breed of animals or crop

groups in fish. Consequently population pharmacokinetics in

production medicine could be applied both to individual and

subgroup therapeutics.

Food animal residue avoidance

As pointed out previously, veterinary medicine deals not only

with companion species, but also with animal species that will

ultimately serve as source for human food products. In this latter

case, the importance of accurately describing the disposition of

drugs in animals according to clinical or production variables

without designing extensive individual pharmacokinetic studies,

is clearly evident, especially considering the influence that these

variables may bear in the deposition of drug residues in those

animal's tissues or food products (milk, eggs).

Although there is great potential for the population approach

to address drug tissue disposition and residue avoidance,

adequate strategies for its implementation have yet to be

explored. One of the obvious limitations of tissue residue studies

is the lack of sufficient tissue samples per individual (unless

biopsies are performed) to characterize tissue depletion kinetics

individually (only one sample per animal and time point is

usually available). To overcome these limitations, population

pharmacokinetic studies could be conducted according to a

multicompartment experimental protocol. Adequate multicom-

partmental or hybrid physiological-compartmental models could

be analysed in order to define relationships between plasma and

tissue concentrations, taking into account the influence of

concomitant pathophysiological or production variables. If such

plasma-tissue relationships are found during the decay phase, it

will be necessary to explore the stability of these relationships. In

other words, one must ascertain whether the amount of drug in

the tissue compartment divided by the amount of drug in the

plasma compartment is constant or equal to some definable

function throughout the depletion (e.g. b-phase). Presumably a

larger number of experimental individuals than those used for

regular population studies would be necessary, as well as a large

number of plasma samples per individual (`data rich') to

`compensate' for the scarcity of tissue samples. The outcome

would be a model quantifying the relationship between plasma

and tissue levels with concomitant variables. Such a model

should be able to predict with a high degree of confidence tissue

concentrations for determined doses and clinical or production

conditions. Likewise, withdrawal times (and appropriate con-

fidence intervals) could be determined for specific individuals or

subpopulations, attending at the magnitude of their clinical or

production parameters.

The ultimate application of this methodology would be the

implementation of a Bayesian type of approach to define

therapeutic models useful in the field. Although the initial

development of the model would require a relatively large

number of animals, these could be the same individuals involved

in clinical trials. The strength of the population approach is that

data collected from a wide variety of experimental protocols

(efficacy, safety, residues) can be pooled into a single model for

the drug. The final objective would be to estimate the probability

of violative tissue residue levels in a herd undergoing drug

therapy by considering the concomitant production variables

(e.g. weight, daily gain, etc.) and screening a reduced number of

animals in the production unit.

The situation for animal food products other than those

derived from animal tissues (e.g. milk or eggs) should be more

straightforward. Serial samples can be obtained from these

`compartments' and consequently more accurate pharmacoki-

netic profiles can be determined for the depletion of drug from

these compartments.

Another area worthy of exploration using the population

approach is that of allometric interspecies scaling of pharmaco-

kinetic parameters, given the ability of this methodology to

directly model large pools of data (often unbalanced) from many

individuals (Riviere et al., 1997). Population analysis of data

from a single species may be incapable of detecting many

covariates that influence the pharmacokinetic-pharmacody-

namic (PK-PD) profile of a drug or its tissue depletion

characteristics. In contrast, population analysis of data from

several species, with body weight and enzymatic composition as

covariates, has the potential to unveil allometric relationships

which cannot be easily detected by other methods (Vozeh et al.,

1996). Studies of this kind would provide veterinarians and drug

developers with the ability to extrapolate serum and tissue data

across species, taking into account the influence of some

important intra and interspecies clinical factors. Mixed effects

modelling strategies have proved useful for interspecies allo-

metric scaling using preclinical data (Cosson et al., 1995).

Drug development

Much can be gained from the application of population

pharmacokinetic and pharmacodynamic modelling methods

during the process of drug development in veterinary medicine.

One of the main goals of drug development is obtaining

knowledge about the PK-PD characteristics of the drug in
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populations. First, the dose-blood concentration relationship is

defined. Then, the relationship between blood concentration and

effect (some clinical output of interest often modelled as an effect

compartment) is identified. The resulting PK-PD model allows for

description of dose±response relationships across a population.

The ability of this approach to build PK-PD models under diverse

experimental and nonexperimental conditions, and tie them to

measurable clinical conditions, can be of great advantage in the

development of veterinary drugs. In humans, strategies invol-

ving the population approach have been advocated for assessing

pharmacokinetic and pharmacodynamic variability as well as

dose-concentration-effect relationships during the drug develop-

ment process (Sheiner, 1992). Combined pharmacokinetic-

pharmacodynamic models are used to optimize the completion

of Phase III studies in humans (clinical trials) (Peck et al., 1992;

Steimer et al., 1993; Van Peer et al., 1993).

Although the clinical trials phase of the drug development

process seems to be the best suited to population studies, very

valuable information can be derived from the implementation of

this approach at earlier stages during drug development. At

these early stages, population kinetics can be very useful in

targeting the appropriate dose to be used in clinical trials. The

interest of the sponsor that develops a drug is to minimize the

cost, the time, and the number of experimental subjects and

patients that are necessary for completion of these studies, i.e. to

minimize the amount of data that has to be obtained to

demonstrate safety and efficacy of a drug. Well defined

population PK-PD models would assist sponsors to avoid drug

titration studies where the selected dosages lie on the flat

(maximum) portion of the dose±response curve. It would also

help the Food and Drug Administration (FDA) identify situations

when lower doses may provide comparable efficacy but lower

potential for toxicity.

The main goal of population pharmacokinetics is to identify

subpopulations of patients whose response differs either with

respect to location (mean) or variability, and to tie those

differences to some measurable covariate. During clinical trials,

population pharmacokinetic-pharmacodynamic models would

allow identifying subpopulations which may require a different

dosage regimen. This would provide a more efficient way to

determine dose ranges. Nowadays, dose ranges are still based

upon data collected in healthy animals with homogeneous

physiological characteristics. Well defined population PK-PD

models would be useful to support supplemental applications

(e.g. different dosage regimens, alternative indications, new

routes of administration). In the light of the upcoming flexible

labelling policies (Martinez et al., 1995) population PK-PD can be

a very useful tool for sponsors to provide the required

information with a minimum expenditure of resources.

Once a drug reaches the market, continued monitoring of the

drug and completion of new population studies would provide

additional information that, when compiled with previous informa-

tion in an integrated database system, would help to define even

more precisely the pharmacokinetic-pharmacodynamic character-

istics of drugs in every clinical situation. In the case of drugs

administered to food animals, this database would provide valuable

information to adapt withdrawal times to specific clinical condi-

tions. The extralabel use of drugs in food animals, as implemented

by Animal Medical Drug Use Clarification Act (AMDUCA), would

especially benefit from this approach, as information from different

sources regarding the pharmacokinetics of the drug in edible tissues

for different doses and clinical conditions, would allow computa-

tion of better estimates of preslaughter withdrawal times. Overall,

this would improve the safety of animal products destined for

human consumption.

In summary, the use of population modelling approaches

during drug development would be optimal as it provides

pharmacokinetic information linked to clinical variables using

very few samples from each individual animal, and clinical data

which is already collected may be used to construct a better

defined model.
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APPENDIX I . L IST OF USEFUL TERMS

Bootstrapping

A computer-intensive resampling method for estimating con-

fidence intervals, sampling variances and stability of regression

models. In PPK it is used for internal validation of a developed

population model.

Jackknife

A resampling technique for reducing bias in parameter

estimates.

Model validation

The analysis of the predictive performance and/or stability of the

population model.

Bayesian prediction

Predictive technique based on estimating the posterior prob-

ability of a set of parameters in an individual based on the prior

probability of these parameters (population model) and a small

number of individual measurements.

Mixed effect models

A statistical technique that accounts for fixed effects (variables

measured without error) and random effects (random variables).
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