
Review

Innate Immunity and Host Defense Peptides in Veterinary Medicine

A. Linde, C.R. Ross, E.G. Davis, L. Dib, F. Blecha, and T. Melgarejo

Recent years have witnessed a surge in interest directed at innate immune mechanisms. Proper conceptualization of the key

elements of innate immunity, however, is still a work in progress, because most research in immunology traditionally has been

focused on components of the acquired immune response. The question of why an animal stays healthy in a world filled with

many dangers is perhaps as interesting as why it sometimes surrenders to disease. Consequently, studies with an increased focus

on inborn mechanisms of animal host defense may help further the development of appropriate preventative and therapeutic

measures in veterinary medicine. Host defense peptides (HDPs) are central effector molecules of innate immunity, and are

produced by virtually all living species throughout the plant and animal kingdoms. These gene-encoded peptides play a central

role in multiple, clinically relevant disease processes. Imbalances in the expression of HDPs can lead to overt pathology in

different organ systems and cell types in all species studied. In addition, HDPs are an ancient group of innate chemical pro-

tectors, which are now evaluated as model molecules for the development of novel natural antibiotics and immunoregulatory

compounds. This review provides an overview of HDPs and is aimed at veterinary practitioners as well as basic researchers with

an interest in comparative immunology involving small and large animal species.

Key words: Antimicrobial peptides; Danger-associated molecular patterns; Natural antibiotics; Pathogen-associated

molecular patterns; Pattern recognition receptors; Toll-like receptors.

I
n a world filled with microorganisms, survival without
the inherent protection of innate immunity would be

virtually unattainable. The clear success of survival based
on innate defense mechanisms alone is solidly evident in
plants, fungi, and invertebrates – all of which completely
lack acquired immune mechanisms.1 Innate immunity as
such constitutes an evolutionarily ancient scheme found-
ed on a relatively generic, but nevertheless quite effective
defense strategy. In addition to the immediate anatomi-
cal barriers of the organism, this intrinsic resistance
system relies primarily on pattern recognition receptors
and associated signaling pathways, specialized chemical
mediators (cytokines), the complement cascade, leuko-
cytes, and importantly host defense peptides (HDPs).2

The list of natural compounds with antimicrobial activ-
ities is extensive, but largely includes 3 functional groups:
(1) digestive enzymes targeting microbial structures (eg,
lysozyme), (2) peptides that bind essential elements such
as zinc or iron (calprotectin and lactoferrin, respectively),
and (3) peptides that disrupt the microbial membrane
(eg, defensins and cathelicidins, as discussed below).3 At
the end of the 1920s, Alexander Fleming identified
lysozyme as the 1st peptide with antimicrobial activity.
It is, however, only in the past 2 decades that develop-
ments in molecular biology techniques have allowed
isolation and identification of individual peptides, and
the establishment of their structural and functional
features.4,5 This review is aimed at providing an over-
view of the current understanding of HDPs, with special

emphasis on defensins and cathelicidins and their role in
immunological defense in companion and production
animals. Defensins and cathelicidins are highlighted
because these currently are the most studied vertebrate
HDPs. In addition, the potential application of natural
antimicrobial compounds as templates directed at the
development of novel antibiotics and immunoregulatory
drugs for use in veterinary medicine is discussed.

The Importance of an Innate Host Defense

An immediate nonspecific defense system aimed at con-
trolling potential infectious as well as noninfectious
dangers efficaciously is vital to ensure animal health. The
term ‘‘danger’’ is used here in reference to the ‘‘Danger-
Model’’ concept,6 which entails activation of an immune
response not only in response to microorganisms (non-
self), but also as a reaction toward all other types of
insults (or ‘‘danger signals’’), including physical trauma,
ionizing radiation, oxidative stress, ischemia, and extreme
temperatures. Innate immunity thus ensures an immediate
mode of defense in virtually all living organisms. A group
of multifunctional antimicrobial peptides (ie, the HDPs)
comprise the core of this innate immune response.7

In animals higher on the evolutionary ladder (eg, mam-
mals being more ‘‘evolved’’ than insects), the initial
interaction between microbial intruders and their prospec-
tive host takes place on the cutaneous surface or on the
epithelial lining of the gastrointestinal, reproductive, respi-
ratory, or urinary tract.8,9 Thus, it is not surprising that
epithelial cells of vertebrates produce HDPs as components
of this 1st line of defense. Because inflammation comprises
an initial reaction in the innate immune cascade, it is rea-
sonable that HDPs are also produced by inflammatory
cells such as neutrophils, and tissue phagocytes, including
macrophages.3,4,10 Perhaps not immediately logical, how-
ever, is that HDPs are expressed by less typical cell types (at
least from a purely immunological point of view) such as
endotheliocytes and myocytes, thus suggesting a universal
function of innate immune mechanisms.11–13 This would
further expand the common view of the immune system as
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an entity of professional immune cells surveying the body
for potential intruders to that of an integrated and inclusive
entity of cells communicating and collaborating to ensure
maintenance of homeostasis.14

Broadly defined, HDPs have the capability of target-
ing any organism with a cholesterol-free, negatively
charged membrane. The functional capacity of different
HDPs thus includes broad-spectrum antimicrobial activ-
ities against Gram-positive and Gram-negative bacteria,
mycobacteria, fungi, intracellular parasites, and envel-
oped viruses.4,15 Importantly, HDPs are able to kill
transformed or cancerous cells, a cytotoxicity that
tends to be neither species-specific nor selective.2,16,17

A linkage to initiation of an adaptive immune response
has been observed for defensins, which act as direct
chemoattractants for immature dendritic cells.2,17,18

Some defensins are opsonic (ie, they enhance phagocyto-
sis) and also have the capability to modify hormonal
reactions.16 Thus, HDPs are far more than ‘‘simple nat-
ural antibiotics.’’ As such, HDPs seem to play a central
role in a number of clinically relevant disease processes,
including low grade inflammation, obesity, diabetes, and
hyperlipidemia.19–22 Table 1 outlines clinically relevant
disease processes (and associated pathogens) in which
HDPs most likely play a role. The physiological properties
and regulation of these molecules therefore may hold a key
to explaining many complexities in veterinary medicine.

Structural Characteristics of Defensins and
Cathelicidins

Natural antimicrobial substances are numerous and,
as a group, rather heterogeneous, varying in size from
relatively large protein complexes (eg, the complement
cascade) to small inorganic molecules (eg, hydrogen per-
oxide).8 To date, approximately 900 different HDP
sequences have been identified (cataloged in the Italian
Trieste Database at http://www.bbcm.univ.trieste.it/).
The conventional definition of ‘‘antimicrobial peptides’’
(synonymous with HDPs), however, includes only gene-
encoded, ribosomally synthesized polypeptide antimicro-
bial substances 100 amino acid residues in length.8

Because the majority of fungal and bacterially derived
peptide antibiotics are nonribosomally synthesized pep-
tides incorporating atypical amino acids, the above
definition separates HDPs from this category.8 Two ma-
jor classes of conventional HDPs are the defensins and
cathelicidins. A large number of other HDP families are
present in invertebrates, most notably a wide variety of
different insects, yet these peptides do not fall within the
scope of this paper.
Four broad structural groups of folded HDPs have

been described, including a-helical peptides (eg, cathelici-
dins), b-sheet peptides with 2–4 disulfide bonds (eg,
a- and b-defensins), loop peptides with 1 disulfide bond
(eg, bactenecin), and extended peptide structures rich in
arginine, glycine, histidine, praline, tryptophan, or some
combination hereof (eg, indolicidin).23 The biological
effect of these cationic peptides is primarily dependent
on their (tertiary) structure, and thus their structural
characteristics are of direct interest.3

Classical defensin molecules encompass a family of
small amphipathica variably arginine-rich cationic pep-
tides (typically 30–40 amino acid residues in length)
characterized by 6 disulfide-paired cysteines (linked Cys
[1–6], Cys [2–4], and Cys [3–5], for a-defensins, and Cys
[1–5], Cys [2–4], and Cys [3–6], for b-defensins—see de-
scriptions below).2,4,11,16 Some defensins are particularly
abundant in mammalian phagocytes, where they can
comprise up to 50% of total protein in azurophilb gran-
ules.4,16 Defensins have, however, also been identified in
other cell types, including tissue macrophages, small in-
testinal epithelial cells, and cardiomyocytes.13,24,25 The
overall structure of the defensin peptides has been com-
pared with a bent paperclip, because of the characteristic
chemical composition consisting of a triple-stranded b-
sheet structure and a connecting loop that creates a base
from which a b-hairpin hydrophobic structure extends
almost perpendicularly4 (Fig 1). To date, 3 different cat-
egories of vertebrate defensins have been described (in
addition to the insect and plant defensins) based on size
and structural differences in the cysteine linkage (second-
ary structure).7,26

a-defensins are the classical ‘‘neutrophil defensins,’’
which were first described in the mid-1980s, whereas the
slightly larger b-defensins were reported initially in the
early 1990s.9 The Trieste Databasec contains 90 b-defen-
sins and 55 a-defensins. More recently, y-defensinsd have
been described. a- and b-defensins are widely distributed
across species, but y-defensins are expressed only in
granulocytes of the rhesus macaque and some other pri-
mates, including other Old World monkeys and
orangutans.27 Other great apes (including humans) and
New World monkeys do not express y-defensins.28–30

y-defensins are double-stranded small circular molecules,
in contrast to a- and b-defensins, which are flat triple-
stranded b sheets.7

A unifying feature of the cathelicidin peptides is a
marked homology termed the catheline domain at the 50

region, and a variable C-terminal antimicrobial do-
main.5,31,32 Cathelicidins are found in varying numbers
in numerous different species, including domestic ani-
mals.15,33 They are stored as inactive propeptides
and processed only upon stimulation, thus resulting in
the release of active HDPs into the extracellular
fluid.15 Cathelicidins typically are expressed by myeloid
precursor cells, but expression also has been reported
in mature circulating neutrophils and neonatal lym-
phoid tissue in some animal species.15,34 Moreover, the
number of cathelicidin antimicrobial peptides varies
among species, which most likely leaves different animals
with varying levels of resistance toward specific types of
infections.35 Interestingly, cathelicidins and defensins ex-
hibit synergism,36 implying their combined role in the
orchestration of the innate host defense, as further dis-
cussed below.

Host Defense Peptides – Synthesis, Expression,
and Mechanism of Action

HDPs can be either constitutively expressed or
induced in response to specific stressors such as
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infection and inflammation.3,31,37–39 a-defensins tend to be
produced constitutively, whereas themajority of b-defensins
are inducible.7,15 Moreover, a-defensins have evolved
to operate mainly from within phagosomes, whereas
b-defensins are produced primarily by epithelial cells.7

Lipopolysaccharide (LPS) and the proinflammatory
cytokines IL-1b and TNF-a promote HDP synthesis.3

Their production resembles that of peptide hormones,
involving sizable precursor molecules and tissue-specific
sequential proteolytic processing.4 After removal of the
signal sequence, the proregion is disposed of, yielding the

mature HDP.15 Defensin molecules are produced as neu-
tral preprodefensins (approximately 95 amino acids),
which are not cytotoxic to the cell.16 The antimicrobial
and cytotoxic functional properties of the mature
defensins (and other HDPs) generally are thought to be
associated with their pore-forming activities as multimers
in biological membranes leading to self-promoted
uptake,15,16 a mechanism that has been further described
by the Shia-Matsuzaki-Huang model40–42 (Fig 2). The
HDPs target the ‘‘Achilles heel’’ of the microbial mem-
brane (ie, the absence of cholesterol and negatively

Table 1. Host defense peptides in veterinary medicine.

Species Peptide In vitro Antimicrobial Activity Clinical Disease (examples)

Dogs K9CATH cBDs Escherichia coli, Klebsiella pneumoniae,

Proteus mirabilis, Candida albicans

Urinary tract infections

Salmonella enteritidis, S. typhimurium,

Escherichia coli

Gastroenteritis

Listeria monocytogenes Meningitis, abortion

Staphylococcus aureus Dermatitis

Candida albicans Stomatitis, spondylitis, dermatitis

Horses eNAPs Escherichia coli, Klebsiella pneumoniae,

Pseudomonas aeruginosa,

Streptococcus zooepidemicus

Endometritis

eCATHs Streptococcus equines, Escherichia coli,

Klebsiella pneumoniae, Serratia marcescens

Inflammatory airway disease

eBD (Corynebacterium sp. and Staphylococcus

intermedius)a
Otitis

Cattle Epithelial BDs

BNBDs

Escherichia coli, Klebsiella pneumoniae,

Pseudomonas aeruginosa,

Staphylococcus aureus, Candida spp.

Mastitis

LAP Mannheimia hemolytica, Mycobacterium

paratuberculosis

Shipping fever, paratuberculosis

TAP Aspergillus and Candida spp. Systemic mycosis

Bactenecins Escherichia coli, Klebsiella pneumoniae,

Salmonella typhimurium, Enterobacter cloacae,

Leptospira interrogans and L. biflexa

Mastitis, enterocolitis, meningitis,

leptospirosis

BMAPs Staphylococcus aureus, Pasteurella multocida Mastitis, pasteurellosis

Sheep sBDs Mannheimia hemolytica Shipping fever

SMAPs OaBac5a Escherichia coli, Salmonella typhimurium,

Pseudomonas aeruginosa, Staphylococcus

aureus, Staph epidermitis, Candida albicans

Mastitis, enterocolitis

Goats ChBac5 Escherichia coli, Pseudomonas aeruginosa,

Listeria monocytogenes

Mastitis, listeriosis

Pigs pBDs Escherichia coli, (Salmonella typhimurium),

Listeria monocytogenes, Candida albicans

Gastroenteritis, listeriosis

PR-39 Escherichia coli, Salmonella typhimurium,

Listeria monocytogenes, Actinobacillus

pleuropneumoniae

Gastroenteritis, listeriosis, wound healing,

pleuropneumonia

PMAPs Escherichia coli, Salmonella typhimurium,

Pseudomonas aeruginosa, Staphylococcus aureus,

Candida albicans

Gastroenteritis, wound infections, systemic

mycosis

Protegrins Staphylococcus aureus, Pseudomonas aeruginosa Wound infections

Poultry Gallinacins THPs Haemophilus/Avibacterium paragallinarium,

Salmonella Spp., Escherichia coli, Staphylococcus

aureus

Infectious coryza, enteritis, septicemia,

dermatitis

Fowlicidins Escherichia coli, Klebsiella pneumoniae, Listeria

monocytogenes, Staphyloccocus aureus

Enteritis, airsacculitis, septicemia, cellulites,

tracheitis, encephalitis, gangrenous dermatitis

The table provides an overview of clinically relevant diseases in which HDPs are likely to play a role. It should be noted that this is a non-

comprehensive list, because a dysfunctional host defense peptide response in all probability contributes to infectious and inflammatory dis-

orders in general. See text for references and abbreviations.
aPathogens associated with the clinical disease. However, the antimicrobial activity of the listed HDP(s) remains to be tested.
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charged phospholipids on the outer leaflet of the cyto-
plasmic membrane).43 The positive net charge (12 to 1 7
because of an excess of basic over acidic amino acids)15

facilitates binding of an increasing number (1–10 billion
molecules) of HDPs to the phospholipids on the bacterial
surface until the bacterial membrane collapses complete-
ly.7,44 Cholesterol prevents membrane damage, and
because this lipid is an essential part of eukaryotic mem-
branes, it explains why normal concentrations of HDPs
do not cause host-damage.7 The membrane potential of
eukaryotic cells (�15mV) also is low compared with the
bacterial transmembrane potential (�140mV), which
also minimizes interaction.15 Resistance to HDPs is rare,
because it is exceedingly difficult for any microorganism
to change its structural organization of surface phospho-
lipids.26 Some HDPs target intracellular sites in addition
to the bacterial membrane.45 Also, defensins have been
implicated as a link between the innate and adaptive im-
mune responses (Fig 3).

Various tissues and cell types in the body contain gene-
encoded pattern recognition receptors (PRRs) and can
mandate a number of different signaling pathways in

Fig 1. Model of a b-defensin molecule from dog. The structure

displays the characteristic 3 disulfide bonds (ball and sticks), an a-
helix (purple) and three b-sheets (yellow).
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Fig 2. Shia-Matsuzaki-Huang model. The model displays the general consensus for HDPs’ antimicrobial mode of action (other possible

theories for membrane disruption by AMPs have been published also).40–42 1: Host is initially exposed to microorganisms. 2: The innate

immune response involves recruitment of cationic HDPs, which are immediately attracted toward the anionic microbial membrane. 3: The

HDPs form a carpet-like structure on the microbial membrane, instituting channel formations. 4: The channels lead to pore-formation

membrane destabilization and microbial demise. HDP, host defense peptides.
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response to stress, ultimately ensuring production of all
necessary signaling and effector molecules required for
an appropriate and immediate host defense. Host PRRs
generally are surface proteins that immediately identify
conserved molecular structures associated with microbial
pathogens or other impending dangers. The repertoire of
PRRs capable of regulating gene expression encompasses
the Toll-like receptors (TLRs) and the virus-sensing
RIG-I and Mda5 helicases.f,47 Other non-TLR recogni-
tion molecules, however, also have been described. The
structures identified by a given PRR are classified either
as pathogen-associated molecular patterns (PAMPs) or
danger-associated molecular patterns (DAMPs). Classi-
cal PAMPs include LPS and lipoteichoic acid (LTA)
fromGram-negative and Gram-positive bacteria, respec-
tively, viral double-stranded RNA (dsRNA), and fungal
b-glucans.48 The term DAMPs is used here as a common
name referring to PAMPs as well as endogenous alarm
signals released by dying or injured cells.14,49 Matzinger’s
DangerModel defines ‘‘dangers’’ as anything (exogenous
or endogenous) that has the potential to cause tissue
stress or destruction6,14 (Fig 4).
Also in the category of innate sensors are the intracel-

lular Nod-like receptors (NLRs), which present a
powerful combined defense at the plasma membrane (ie,
TLRs) as well as from within the cell (ie, NLRs).48 Both

TLRs and Nodg proteins can trigger the nuclear factor
kB (NF-kB) transcription factor, thus activating a highly
stereotypical signaling pathway responsible for a range
of different cellular responses48 including production of
HDPs. The NLRs have been linked to recognition of
bacterial components as well as endogenous danger sig-
nals.48 TLRs initially received considerable research
interest, and consequently this group of PRRs is most
well-described. More than a dozen different members
have been reported in 6 major families, with each mem-
ber recognizing different PAMPs. LPS is the classical
ligand for TLR4, whereas LTA and CpG oligodeoxynu-
cleotides are recognized by TLR2 and TLR9,
respectively.50

NF-kB signaling is one of the main down-stream path-
ways responsible for HDP production, although other
signaling routes (including MAPKh and JAK/STATi sig-
naling) have been implicated in their synthesis.51 NF-kB
is a transcription factor involved in the integration of
numerous parallel signaling pathways and a variety of
cellular responses central to an immediate and functional
immune response, including the production of cytokines
and cell adhesion molecules.15 Signaling through these
pathways leads to transcriptional activation and subse-
quent production of HDPs. The TLRs and NLRs also
result in activation of the inflammatory caspases,j which

Immune CellsImmune Cells Non-Immune Cells

Inflammation – Innate Host Response:  

PRRsPRRsPRRsPRRs

Recruitment
of phagocytes
Recruitment

of phagocytes 

DAMPsDAMPs

Non-Immune Cells

 Inflammation – Innate Host Response: 

Release of Host Defense PeptidesRelease of Host Defense Peptides

Host defense network 
(cytokines, chemokines, prostanoids)

Host defense network 
(cytokines, chemokines, prostanoids)

Threat controlledThreat controlled Additional “components”Additional “components”

Instruction of
Cellular Mediated 
Adaptive Immunity

Instruction of
Cellular Mediated 
Adaptive Immunity

Fig 3. Innate defense mechanisms and host defense peptides (HDPs) linkage to adaptive immunity. The schematic displays the key com-

ponents of an innate immune response induced by danger-associated molecular patterns’ (DAMPs) interaction with pattern recognition

receptors (PRRs) on professional as well as nonprofessional immune cells (in the context of the figure ‘‘non-immune cell’’ indicates a

nonprofessional immune cell type such as epithelium/endothelium or myocytes). In addition to their immediate actions within the frame work

of an inborn immune response, HDPs also create a biological link between innate and acquired immunity, thus orchestrating an appropriate

overall host defense.
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comprise a field of research beyond the scope of this
paper.52,53

Biological Activity of HDPs

HDPs are the frontiers of inborn immunity in virtually
all living species (Fig 3), and the central importance of
these peptides is evident by their abundance in circulating
neutrophils.15 HDPs participate in the inflammatory re-
sponse by acting as chemoattractants for immune cells
(including neutrophil recruitment by induction of IL-8
production and mobilization of immunocompetent

T-cells54,55) as well as enhancers of cellular adhesion and
the subsequent cellular transepithelial migration. Fur-
thermore, studies suggest that defensins can enhance the
cytotoxicity of NK-cells.15 The versatile nature of HDPs
also includes roles in wound healing (possibly by induc-
tion of syndecank synthesis56) as well as modulation of
the inflammatory response by inhibiting the activation of
the classical complement pathway through C1q.57

Given the ubiquitous production of HDPs in the
organism, it is not surprising that many of these pep-
tides can be found in various types of body fluids
and secretions.3 Plasma a-defensin concentrations of

Fig 4. Danger Model of Innate Immunity. Different infectious and noninfectious molecular structures (PAMPs and endogenous alarm

signals, respectively) constitute indicators known as danger associated molecular patterns (DAMPs). The DAMPs activate the innate im-

mune system through pattern recognition receptors (PRRs) and NFkB-signaling, leading to production of host defense effector molecules

(HDPs). N, neutrophils; E, eosinophils; B, basophils; Mo, monocytes; DC, dendritic cells; Ma, mast cells; MØ, macrophages; LPS, lip-

opolysaccharide; LTA, lipoteichoic acid; CpG, DNA with cytosine and guanine separated by a phosphate; TLR, toll-like receptor; NLR,

nod-like receptor; NF-kB, nuclear factor kB; HDPs, host defense peptides; PAMP, pathogen-associated molecular patterns.
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40 ng/mL have been measured in normal human subjects,
increasing in concentration to 41mg/mL during infec-
tions.4 Also, plasma concentrations of 170mg/mL have
been measured in sepsis,58 as have concentrations of
41600 mg/mL in sputum from cystic fibrosis patients.59

The antimicrobial activity of a-defensins in vitro gener-
ally relies on peptide concentrations between 10 and
100mg/mL, although their contribution to tumor cell
lysis occurs at higher concentrations4 (Fig 5). HDPs are
most likely secreted at higher concentrations in infected
or otherwise diseased tissue, but local peptide concentra-
tions have yet to be investigated.4 Certain HDPs act as
anti-inflammatory compounds in sepsis because of their
LPS- and LTA-binding capacity,15 and, in addition to
neutralizing endotoxin, some cathelicidins act directly to
decrease the release of TNF-a.60

A number of HDPs are known to be inactivated by salt,
and some have decreased antimicrobial activity even at
physiological salt concentrations (approximately 150mM
NaCl).7,17 Current research suggests that extracellular re-
lease of certain defensins yields inactive peptides, whereas
concomitant release of cathelicidins ensures active HDPs
working synergistically.36 Synergy has also been described
between lysozyme and other HDPs.15 Some HDPs pro-
mote angiogenesis and epithelial growth, and some act as
chemokines attracting circulatory or migrating cells.26,61–
63 Defensins possess chemotactic features toward mono-
cytes, and can act as ‘‘corticostatins’’ by reversibly
interacting with the receptor for adrenocorticotropic hor-
mone (ACTH).4 Defensins can modify a number of
signaling pathways and cellular functions in the body by
potent inhibition of protein kinase C.64 A role of b-defen-
sins in sperm maturation also has been suggested.65

Versatile Host Defense Peptides in Companion
and Production Animals

Host defense peptides are produced throughout the
animal kingdom. Many HDPs have been identified in
domestic animals, but a striking interspecies variation
exists with regard to the expression of these peptides.1,10

A given species may have a dozen or more different
HDPs, presumably with some overlap in their antimicro-

bial and immunomodulatory activities, although some
peptides tend to function preferentially in only 1 of the
these 2 biological roles.23 The importance of HDPs as
microbicidal compounds versus their role as immuno-
modulators is somewhat controversial.

Owing to the ease of access to material from produc-
tion animals, cattle, sheep, goats, and pigs have been
used widely in the field of HDP research. However, in-
formation on HDPs in companion animals is sparse.
Studies in horses have focused on defensins and cathelici-
dins66,67 and a few reports on canine HDPs are
available.68,69 The need for in vivo experiments in the
area initially led to an increased focus on the mouse as an
animal model. The mouse possesses a single cathelicidin
and a number of enteric a-defensins (cryptidins).7 Mouse
granulocytes, however, lack a-defensins completely,
making its usefulness as an animal model questionable.7

Most species contain a wide range of HDPs with varying
expression levels in different tissues, which ensures a
broad range of antimicrobial coverage and immunomod-
ulatory regulation throughout the organism.15 The
following section provides an overview of the data avail-
able on HDPs in different species of relevance to
veterinary medicine, including companion and produc-
tion animals (Fig 6) and selected other species (Table 2).

Companion Animal Species

Dogs and Cats. The literature on innate immune
mechanisms of the dog and cat is limited. Thus far,
3 b-defensins (cBD-1, cBD-2, and cBD-3) and 1 cathelici-
din (K9CATH) have been identified in the dog68,70

whereas none has been reported in the cat. By means of
computational analysis only, sequences for 43 b-defensin
genes and pseudogenes have been identified in the canine
genome.69 Recently, canine hepcidin (an acute phase
protein with antimicrobial and iron regulatory capacity)
was extracted from canine liver, which is of interest be-
cause hepcidin is thought to be a key mediator in chronic
anemia.71

Most studies on the immunophysiology of cats have
focused on the acquired immune response to infectious
disease.72,73 Although specific HDPs have not yet been
identified in the cat, 1 study focused on feline TLR ex-
pression.74 Normal cat lymphoid tissue expresses TLR1–
TLR9, an expression that is altered by feline immunode-
ficiency virus (FIV).74 Because TLRs are involved in the
synthesis of HDPs, these findings suggest that the cat,
like virtually all other species, also has a range of natural
antimicrobial peptides. Select TLR expression (TLR2,
TLR4, and TLR9) has also been reported in different tis-
sues and cells from the dog,75–79 which would similarly
indicate wide spread expression of different canine
HDPs. Predicted sequences for canine TLR5 and TLR7
have in addition been generated by automated computa-
tional analysis (GeneID: 488605 and 491743,
respectively). Functional studies on canine TLRs are
lacking, but 1 suggestion has been that dysregulation of
TLR2 and TLR4 in intestinal epithelium may contribute
to the pathogenesis of canine inflammatory bowel
disease.80

Biological Activity of HDPs
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Fig 5. Biological activity of host defense peptides (HDPs) The

graph shows that the breadth of activity for HDPs is dependent

upon peptide concentration.
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Fig 6. Overview of host defense peptides in veterinary medicine. Cow – TAP and LAP, tracheal and lingual antimicrobial peptide, respec-

tively; EBD, enteric b-defensin; BNBD, bovine neutrophil b-defensin; BMAP, bovine myeloid antimicrobial peptide; Bac, bactenecins; LF-B,

bovine lactoferricin B. Goat – GBD, goat b-defensin; ChBac, caprine analog to bovine bactenecin. Sheep – sBD, sheep b-defensin; OaBac,

ovine analog to bovine bactenecins; SMAP, sheep myeloid antimicrobial peptide. Pig – pBD, porcine b-defensin; PR, proline rich; PG,

protegrin; PMAP, porcine myeloid antimicrobial peptide; LEAP, liver-expressed antimicrobial peptide. Horse – eBD, equine b-defensin;
eNAP, equine neutrophil antimicrobial peptide; eCATH, equine cathelicidin. Dog – cBD, canine b-defensin; K9CATH, canine cathelicidin.

Chicken – Gal, gallinacin; CMAP, chicken myeloid antimicrobial peptide; cLEAP, chicken liver-expressed antimicrobial peptide.q

Table 2. Host defense peptides in special species.

Species Host Defense Peptide Place of Expression Reference

Chinchilla cBD1 b-defensin Epithelia 236

Guinea Pig GPNP1 a-defensin Neutrophils, bone marrow 237

GPCSIII a-defensin Neutrophils, bone marrow 238

CAP11 cathelicidin Neutrophils, bone marrow 239

Hamster HaNP1-4 a-defensin Neutrophils 240

Crp1-6 a-defensin Paneth cells 23

Mouse mBD1-15 b-defensin Epithelia 241

mBD34-40 b-defensin Epithelia 241

CRAMP cathelicidin Neutrophils, bone marrow 242

Rabbit NP1-3a a-defensin Neutrophils 243

NP3b-5 a-defensin Neutrophils 243

CAP18 cathelicidin Granulocytes 244

rNP1-2,4 a-defensin Neutrophils, tissue 245

Rat 42 rBDs b-defensin Epithelia 69, 246

rCRAMP cathelicidin Granulocytes, tissue 247

BD, b-defensin; NP, neutrophil peptide; Crp, cryptdins; CRAMP, cathelin-related antimicrobial peptide; CAP, cationic antibacterial poly-

peptide. The data provided in the table are intended as an overview only of some of the defensin and cathelicidin HDPs, which have been

reported in small mammals, including examples of their tissue/cellular expression. The majority of the 42 rat b-defensins is based on infor-

mation from the Rat Genome Database (http://rgd.mcw.edu/), and a recent paper on cross-species analysis of mammalian b-defensins.69
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Our group recently identified 3 b-defensins in dog tes-
tes, with selective expression of the 3 isoforms among
different testicular cell types.68 The most active and
longest of the isoforms, canine b-defensin-1 (cBD-1), is
expressed more ubiquitously, whereas the relatively
shorter peptides (cBD-2 and -3) appear to be testes-spe-
cific storage HDPs.68 The antimicrobial effect of canine
b-defensin includes activity against a wide spectrum of
Gram-positive (Listeria monocytogenes and Staphylococ-
cus aureus) and Gram-negative (Escherischia coli,
Klebsiella pneumoniae, and Neisseria gonorrhoeae) bacte-
ria, yeast (Candida albicans), and Ureaplasma in a
salt-dependent fashion.68 We have also identified a more
potent canine HDP, K9CATH (canine cathelicidin), in
myeloid bone marrow cells and circulating neutrophils.70

This peptide has broad-spectrum activity and also
exhibits unprecedented antimicrobial potency against
N. gonorrhoeae and Ureaplasma in a salt-independent
manner. Because this peptide is expressed in circulatory
cells, it has the inherent capability to act not only as a
potent antimicrobial compound but also as a potential
immunomodulator. These findings may explain why
dogs apparently are resilient to sexually transmitted dis-
ease pathogens. Consequently, synthetic forms of these
canine-derived peptides may provide novel therapeutic
options for treating sexually transmitted disease in hu-
mans as well as urinary tract infections in dogs. The use
of synthetic peptides derived from heterospecifics has
proven successful previously (eg, use of the moth-derived
synthetic cecropin to treat naturally acquired canine
leishmaniasis).81

Horses. The existence of antimicrobial compounds in
equine neutrophils was first reported nearly 20 years
ago.82 Later, these peptides were characterized as equine
neutrophil antimicrobial peptides (eNAP-1 and -2),83,84

followed by the identification of 3 equine cathelicidins
(eCATH-1, -2, and -3).67,85 Another antimicrobial com-
pound, equine NK-lysin, produced by lymphocytes was
recently found in the horse.86 a-defensins have thus far
not been reported in the horse, but expression of
1 b-defensin (eBD-1) was described recently.66 Eight po-
tentially functional b-defensin genes and an a-defensin-
like sequence have been reported in the horse based on
computational sequence analysis.87 Equine b-defensin 1
(eBD-1) appears to be constitutively expressed in several
different tissue types and organs, including liver, kidney,
spleen, heart, and the intestine.66 Functional characteris-
tics of eBD-1 have yet to be established, but examination
of the peptide sequence indicates similarities to other
known b-defensins.66 A recent study reported on
b-defensin production in cerumen, where it most likely
acts as a natural antimicrobial to safeguard the equine
auditory canal.88

Cathelicidins from the horse are stored in the classical
unprocessed form (pro-eCATHs) in secretory granules,
and released only upon neutrophil activation.67 Of the 3
cathelicidin genes identified in the horse, only 2 (eCATH-
2 and -3) seem to be able to encode a protein.67 eCATH-1
is expressed at fairly low levels, and the gene is present in
only half of the examined horses. The mature eCATH-1
protein has yet to be detected.85 Common equine

neutrophil-dominated inflammatory disorders such as
acute bronchiolitis and recurrent airway obstruction re-
sult in measurable concentrations of mature eCATH-2
and -3 as well as their respective propeptides in tracheo-
bronchial lavage, findings that are consistent with active
processing of these HDPs in equine inflammatory pro-
cesses.85 The antimicrobial activity and potency of
eCATH-1, -2, and -3 generally is broad, intermediate,
and low, respectively.85 The eCATH-1 peptide (synthetic
form) has the strongest antimicrobial capacity and ex-
hibits virtually no hemolytic activity in vitro, whereas
eCATH-3 has fairly modest antimicrobial activity in low-
salt medium only.85 It is therefore possible that the
eCATH-1 peptide is induced only under specific and
different conditions than what has been investigated so
far, and based on studies involving a modified version of
eCATH-3, the amphipathicity and biological activity of
this peptide seem to be highly interdependent.85 The
known versatility of HDPs also leaves open the question
of what additional role the eCATHs may play in vivo.

The antimicrobial peptides eNAP-1 and -2 are struc-
turally unrelated to the family of defensins found in
neutrophil granules of other species, and substantial in-
ternal differences exist between the 2 peptides.84 The
antimicrobial activity of both eNAPs has been tested
against pathogens commonly involved in clinical
endometritis in mares, including E. coli, K. pneumoniae,
Pseudomonas aeruginosa, and Streptococcus
zooepidemicus.83,84 The content of eNAP-1 in neutro-
phils is fairly low compared with eNAP-2,l but the
peptides appear to have comparable antimicrobial activ-
ities against typical uterine pathogens in the horse.84 The
bactericidal activity of eNAP-1 and -2 (after 2 hours and
100mg/mL concentration for both) against S. zoo-
epidemicus seems most pronounced (499.8% and 94%
decrease in colony forming units [CFU]/mL, respective-
ly), with a relatively lower efficacy against E. coli and
P. aeruginosa (mean decrease of 87% in CFU/mL for
eNAP-1, and 90% and 78% decrease, respectively, for
eNAP-2 after 2 hours, and 200mg/mL concentration
for both). eNAP-2 also exhibits bacteriostatic activity
against K. pneumoniae at 200mg/mL.83,84 In addition to
direct antibacterial activity, a selective microbial serine
protease inhibitionm has been reported for eNAP-2.89 It
is thus likely that eNAPs play a central role in the innate
uterine defense mechanisms of the horse.

Large Animal Species

Cattle. In the mid-1980s, a group of researchers from
University of Trieste initially reported the presence of
broad-spectrum antibiotic polypeptides in bovine granu-
locytes.90 In the following years, different bovine
neutrophil antimicrobial peptides have been isolated, in-
cluding members of the defensin and cathelicidin
families. Cattle possess at least 38 HDPs, including
different defensins and cathelicidins (BMAPs [bovine
myeloid antimicrobial peptides], bactenecins [loop pep-
tides], and indolicidin [extended peptide]).15 Bovine
oligosaccharide-binding protein (bOBP) is a peptidogly-
can recognition protein found in bovine neutrophils and
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eosinophils, suggesting that this peptide may contribute
to antiparasitic activity.91 Furthermore, antimicrobial
compounds from milk (eg, lactoferricin, LF) have re-
ceived considerable research attention.92,93

Epithelial b-defensins have been isolated from the bo-
vine trachea (tracheal antimicrobial peptide, TAP),94

tongue (lingual antimicrobial peptide, LAP),9 intestine
(enteric b-defensin, EBD),95 and mammary gland (bo-
vine b-defensin-1, bBD-1, and others).96,97 Bovine
neutrophil dense granulesn also contain b-defensins (bo-
vine neutrophil b-defensins, BNBD-1 to -13),o some of
which also are expressed in alveolar macrophages (pre-
dominantly BNBD-4 and -5, in addition to the 2
epithelial b-defensins, TAP and EBD).98–100 Cattle, on
the other hand, do not have a-defensins in neutrophils
and the intestinal epithelium.23 The bovine epithelial and
neutrophil b-defensins are different gene products, but
share a high degree of structural similarity.98,101 mRNA
expression of some BNBDs can be observed in cells of
different tissues, including trachea, lung, spleen, and
intestine.98,101

Bovine b-defensins possess antimicrobial activity
against E. coli, K. pneumoniae, P. aeruginosa, Staph.
aureus and Candida spp.94 TAP is expressed throughout
the bovine airway,102,103 and is an example of a b-defen-
sin that is inducible by various infectious agents and
proinflammatory mediators, including TNF-a, IL-1b,
and LTA.38,39 Incubation of primary cultures with
E. coli LPS results in a substantial increase in mRNA
levels encoding TAP.37 Synthetic TAP has a rapid and
potent bactericidal effect as well as antifungal activity
against Aspergillus and Candida spp.104 Contrary to
TAP, LAP expression is more widespread, involving ep-
ithelium of the alimentary tract as well as the respiratory
system, mammary glands, and cornea.101,105 Induction of
LAP expression is observed in acute infection with Man-
nheimia (Pasteurella) hemolytica as well as in chronic
paratuberculosis-infected (Mycobacterium paratubercu-
losis) tissue.101 It also has been suggested that LAP
plays a role in the innate immune response against bo-
vine mastitis pathogens, because LAP expression is
increased in infections of the udder.105 Similarly, local
expression of BNBD5 as well as that of PRRs TLR2 and
TLR4 is upregulated in mastitis.106,107 Importantly, a re-
cent study reported that steroid-treated cattle have lower
expression levels of LAP and TAP, which suggests that
stress and exogenous corticosteroid administration can
lead to an impaired innate immune response in the
lung.108

The bovine alimentary tract expresses low levels of a
number of different HDPs (including LAP, TAP and
BNBD-3, -4, and -9), but the main enteric b-defensin in
the gut is EBD.95 mRNA levels of EBD are increased in
experimental cryptosporidiosis in calves, suggesting that
this HDP plays an active role in the host response to par-
asitic infection.95 The broad spectrum of antimicrobial
activity and inducible expression in inflammation strongly
support a central role for b-defensins in bovine mucosal
host defense.9,37,95

Cathelicidins were first reported in cattle myeloid bone
marrow cells, and include the bactenecins Bac 5 and Bac 7,p

which are bactericidal against E. coli, Salmonella typhi-
murium, and K. pneumoniae, and bacteriostatic to-
ward Enterobacter cloacae.109–112 Selected antiviral
activity also has been noted,109 as well as killing of spiro-
chetes (Leptospira interrogans and Leptospira biflexa).113

A 3rd bactenecin, Bac2S, shows activity against
P. aeruginosa and some Gram-positive bacteria.114

Although traditionally associated with myeloid precur-
sor cells, neutrophils also are capable of de novo
synthesis of cathelicidin peptides at sites of inflamma-
tion.115 BMAP-27 and BMAP-28 are synthetic bovine
cathelicidins with broad-spectrum activity against bacte-
ria, including methicillin-resistant Staph. aureus, and
fungi,116 yet exhibiting some cytotoxicity. The synthetic
BMAP-34 peptide, however, exhibits a similar breadth of
antimicrobial activity, but without any adverse effects on
eukaryotic cells. At a sufficiently high dose almost all
AMPs may exhibit toxicity toward eukaryotic
cells.117,118 BMAP-28 also has activity against tumor
cells in vitro.119 Moreover, BMAP-27 (as well as Bac7)
can effectively bind LPS, and thus may have potential
use in treatment of endotoxin-induced septic
shock.120,121 BMAP-28 also exhibits broad-spectrum
activity against Pasteurella multocida isolates.122 The role
of bovine HDPs as immunomodulatory molecules has
received some attention.123 Indolicidin is one of the
shortest cathelicidin peptides (13 amino acids), exhibit-
ing potent and wide antimicrobial activity against
Gram-negative (E. coli) andGram-positive (Staph. aureus)
bacteria92 as well as fungi,124 and it also has antiendotoxic
and chemokine-inducing properties.93,123,125,126 More-
over, modified synthetic versions of indolicidin (eg CP-
11C) have improved in vitro antibacterial and antifungal
activity combined with less cytotoxicity.125,127

A range of bioactive peptides has been identified in
bovine milk, such as synergistically acting probiotics and
antimicrobial compounds, including casecidin and lac-
toferrin.128–132 Lactoferrin is also present in other body
secretions such as saliva, tears, and bronchoalveolar la-
vage (BAL) fluid and in leukocyte granules.133 The
peptide LF-B is generated by gastric pepsin degradation
of lactoferrin and has a wide range of antimicrobial and
antifungal activity as well as immunomodulatory prop-
erties.128,134–138 Lactoferrin is a much larger molecule
(80 kDa) than free LF (3 kDa), possibly explaining the
peptide fragment’s higher degree of activity because of
the ease with which it can penetrate the bacterial mem-
brane.133 Partial synergism with penicillin G against
Staph. aureus also has been reported.130 Lactoferrin has
in addition been suggested as a good candidate for a nov-
el natural antiviral compound.139,140 Importantly, it is
economically feasible to obtain protein fractions from
milk and generate active peptides for use as nut-
raceuticals and as templates for development of new
pharmaceutical compounds.128,141,142 Oral administra-
tion of LF produces a host-protective effect in a number
of different animals (including humans), and a pepsin
hydrolysate of lactoferrin is already used in infant
formulas.143

The vast majority of naturally occurring HDPs are
cationic peptides. A unique finding, however, is a group
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of anionic antimicrobial peptides in the bovine lung that
are constitutively expressed and distinctly different from
most HDPs with regard to size and polarity.144 These
small peptides (unlike the majority of HDPs) have in-
creased their activity at higher NaCl concentrations.144

The anionic peptides are not inducible by pathogens or
microbial byproducts, but their expression in the lung
suggests a role in innate host defense of the bovine respi-
ratory system.144

Sheep and Goats. Smaller ruminants have attracted
some research attention because of their potential use as
animal models to study HDP regulation in epithelial tis-
sue and importantly the impact of pharmaceutical
intervention on peptide expression patterns.145 Two
sheep b-defensins (sBD-1 and sBD-2) with differential
expression have been identified in the ovine gastrointes-
tinal and respiratory tract epithelium.145,146 However,
unlike cattle, sBDs are not found in neutrophils.145 In
goats, 1 study has reported the expression of b-defensin
precursors (preproGBD-1 and preproGBD-2), principal-
ly in the caprine respiratory and gastrointestinal
tracts.147 Goat milk also contains lactoferrin, which
exhibits antimicrobial properties.148 Proline-rich antimi-
crobial peptides are highly conserved HDPs in
ruminants, and caprine (ChBac5) and ovine (OaBac5a)
analogs to the bovine Bac5 have been described, both ex-
hibiting potent antimicrobial activity.149 Sequence
analysis has determined that there potentially are 8 ovine
cathelicidins,150 but only 2 peptides have actually been
isolated from ovine neutrophils.151,152 The sheep myeloid
antimicrobial peptides (SMAP29 and SMAP34) are cat-
helicidins with broad-spectrum antimicrobial activity
against Gram-positive and Gram-negative bacteria, and
fungi.122,153–156 SMAP29 binds LPS with high affinity,157

and maintains its potent activity under high-salt condi-
tions.153 This peptide (including synthetic derivatives)
may find clinical application in the treatment of respira-
tory infections.158,159

Pigs. Porcine HDPs include more than a dozen differ-
ent peptides, primarily with representatives from the
cathelicidin family (including the prophenins, protegrins,
PR-39, and the PMAPs).160,161 Thus far, no a-defensins
have been isolated from the pig, but at least 12 different
porcine b-defensins (pBD-1 to pBD-12) have been re-
ported.162,163 Other HDPs, including NK-lysin and
porcine LF, also have been reported in this species.164–166

Recently, another porcine AMP (ie liver-expressed anti-
microbial peptide, LEAP) was described, along with
porcine hepcidin (an iron-regulating hormone with anti-
microbial effects).167

Thirty-nine residue proline-arginine–rich peptide (PR-
39) was originally isolated from pig intestine,168 and later
identified in porcine bone marrow cells169 and neutro-
phils.170 In addition to its antimicrobial activity, PR-39
has been implicated in tissue repair171 and as a chemoat-
tractant of neutrophils172 as well as an inhibitor of
apoptosis.173 Expression of PR-39 is constitutive in my-
eloid cells and present in pigs of all ages.34 The PR-39
peptide is upregulated in the presence of bacterial prod-
ucts,174,175 and its antimicrobial action relies on a non–
pore-forming mechanism.176 It has a potency against

Gram-negative bacteria similar to that of tetracycline.177

A smaller synthetic peptide (PR-26) derived from PR-39
has been shown to have at least as much potency as its
parent molecule.178 Importantly, PR-39 also has been
suggested as a novel biomarker of porcine respiratory
health.179

The protegrin family of HDPs was first identified in
porcine leukocytes,180 and 5 protegrin sequences (PG-1
to -5) have been identified.181–183 The protegrins are
elastase-activated cathelicidin polypeptides with potent
microbicidal activities.180,184–186 PG-1 exhibits a wide
spectrum of in vivo activity against Gram-negative and
Gram-positive bacteria, and the synthetic peptide thus
has potential for use as an antimicrobial agent in the
treatment of clinically relevant antibiotic resistant patho-
gens.181,187 PG-1 also exhibits in vitro activity against
certain spirochetes.188 In addition, the peptide has at-
tracted interest because of its potent activity against
human STD pathogens, including human immunodefi-
ciency virus (HIV),189–192 periodontal pathogens,193,194

and Mycobacterium tuberculosis.195 Importantly, PG-1
also exhibits powerful antimicrobial activity against
P. aeruginosa, and substantially reduces bacterial growth
in established porcine wound infections.196

Other members of the cathelicidin family include the
prophenins (prophenin-1 and -2)197,198 and the porcine
myeloid antimicrobial peptides (PMAP-23, PMAP-36,
and PMAP-37).199–202 Prophenin-1 has been purified
from porcine leukocytes and is substantially more active
against Gram-negative bacteria,197 whereas the PMAPs
are broad-spectrum highly potent HDPs derived from
pig myeloid cells. Their spectrum of activity includes
Gram-negative and Gram-positive bacteria199 as well as
fungi and nematodes.203,204 Novel peptide analogs of
PMAP-23 have shown promising effects against fungi
(C. albicans), and may act as templates for design of nov-
el antifungal pharmaceutical compounds to treat clinical
fungal infections.205

Porcine b-defensin-1 (pBD-1) is particularly abundant
in tongue epithelium and expressed at only low mRNA
levels in other epithelial tissues.162,206 The expression
pattern of the peptide appears to be developmentally reg-
ulated,207 and antimicrobial effects include activity
against E. coli, L. monocytogenes, S. typhimurium, and
C. albicans under low-salt conditions.162,206 pBD-1 acts
synergistically with some of the porcine cathelicidins,
ensuring antimicrobial activity at higher salt-
concentrations.206 The expression of pBD-1 may be reg-
ulated by the recently identified porcine peptidoglycan
recognition proteins (pPGRP-L1 and -L2 [ie long-iso-
forms]).208 Using bioinformatics and expression analysis,
an additional 11 porcine b-defensins have been identi-
fied.209 The main gene expression sites for pBD-2 are
liver and kidney, and the peptide is the most highly ex-
pressed defensin in the ileum.167,210 The expression of
pBD-1 and pBD-2 has been studied with the porcine in-
testinal cell line IPI-21163 as well as the porcine small
intestinal segment perfusion (SISP) technique.210 In
vitro, Salmonella enteritidis and S. typhimurium increase
pBD-1 and pBD-2 mRNA levels, respectively, whereas
neither of the two is affected by S. typhimurium exposure
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using the SISP model.163,210 Despite the common
notion of pBD-1 as a constitutively expressed AMP, up-
regulation of the peptide by S. typhimurium (ie, entero-
colitis) exposure does seem possible under some
circumstances.163,210

The expression pattern and activity of porcine HDPs
also become important in reference to using porcine or-
gans and tissues in xenotransplantation.162 Finally,
porcine antimicrobial peptides can be of interest in the
development of novel functional foods, because digestion
of protein of porcine origin may lead to the release of
latent bioactive peptides with potential impact on human
health.211

Special Species

Small Mammals. Very little research has focused on
HDPs in small mammals with the exception of the mouse.
An exhaustive review of murine HDPs is beyond the scope
of this paper, and we have presented an overview of cur-
rently reported HDPs in special mammalian species in
Table 2. A wide range of AMPs has been discovered in
other exotic species and food animals, including amphib-
ians, fish, and other aquatic vertebrates.212 These studies
are also beyond the scope of this paper.
Birds. Avian heterophil antimicrobial peptides of the

b-defensin family initially were reported in the chicken
(CHP-1 and -2/aka Gal-1 and -2) and turkey (THP-1 and
-2).213–216 A total of 13 different b-defensins (gallinacin-1
to -13) and 3 cathelicidins (fowlicidin-1 to -3) are encod-
ed by the chicken genome according to computational
analysis.217,218 The chicken genome does not, however,
code for any a-defensins.217 Furthermore, TLR expres-
sion has been reported in chicken heterophils.219 Based
on tissue expression analysis, gallinacin-1 to -7 are found
primarily in the respiratory tract and bone marrow,
whereas the remaining genes are restricted to the urogen-
ital tract and liver.217 Gallopavin (GPV-1) and
gallinacin-3 are epithelial b-defensins from the turkey
and chicken, respectively, and the latter is inducible by
experimental infection with Haemophilus para-
gallinarium.220 Mature fowlicidin peptides exhibit potent
LPS-binding and broad antimicrobial activity in a salt-
independent manner, features that make them attractive
as candidates for novel antimicrobial and antisepsis com-
pounds.218,221 Another cathelicidin, chicken myeloid
antimicrobial peptide (CMAP-27), has been identified in
chicken bone marrow cells,222 and a liver-expressed
epithelial antimicrobial peptide (cLEAP-2) also has been
reported in the chicken with activity against different
Salmonella strains.223,224 In addition to chicken and tur-
key, avian HDPs have thus far been isolated from ostrich
circulatory cells, and from king penguin stomach con-
tent, where the peptides are believed to ensure long-term
preservation of stored food.225,226 Description of the av-
ian antimicrobial profile is of interest to identify novel
compounds aimed at fighting infectious diseases in avian
species, but also because birds act as asymptomatic car-
riers and thus major reservoirs for bacteria that are
known human enteropathogens.223,227

Therapeutic Potential in Veterinary Medicine

One of the major problems in modern medicine is an
alarming increase in antibiotic resistance to conventional
antibiotics, which has created an obvious need to search
for novel compounds to maintain a functional armament-
arium aimed at fighting pathogens. From an evolutionary
viewpoint, HDPs are ancient yet widely successful endog-
enous biochemical weapons.43 Contrary to classical
antibiotics, which are made in a sequential fashion in-
volving different enzymatic steps, HDPs are all gene-
encoded peptides originating from an RNA template.228

Their consistency in efficacy throughout evolution would
furthermore speak against the common belief that micro-
organisms inevitably will develop resistance against any
imaginable antimicrobial compound over time.43 The
structure of naturally occurring antimicrobial com-
pounds from higher eukaryotes is distinctly different
from conventional bacterial and fungal types of antibiot-
ics,8 which makes them highly attractive as potential
templates for new therapeutic agents in the continuous
search for novel antimicrobials to fight progressively
more resistant microbial pathogens.8 Interestingly, natu-
ral HDPs can act synergistically with certain conventional
antibiotics targeted at Gram-negative as well as Gram-
positive bacteria.45,229,230 Figure 7 summarizes the main
features that warrant consideration of HDPs as a desir-
able new class of antibiotics. It is furthermore of interest
that certain HDPs adopt amphipathic structures only
on contact with biological membranes or when exposed
to a membrane-mimicking environment.23

As a group, HDPs also are of medical interest as possi-
ble future model molecules for novel immunoregulating
drugs because of their natural capacity to act as immune
response modifiers. Pharmaceutical compounds of tomor-
row thereforemay be designed as immunomodifiers, aimed
at optimizing HDP synthesis in a chosen organ or tissue
type, which is of the utmost importance because the regu-
lation of innate immunity is organ-specific.7,231 Isoleucine
is an example of 1 such compound, which can induce syn-
thesis of b-defensin production in enteric cells using TLR2
and NF-kB-signaling.7,43,232,233 Also the use of corticoste-
roids in certain inflammatory diseases may lead to
iatrogenic complications, because these are synthetic com-
pounds that suppress endogenous HDP synthesis.26
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Fig 7. Elemental features of an ideal novel antimicrobial agent.

A. Broad spectrum of antimicrobial activity (against bacteria,

viruses, fungi, parasites). B. Rapid bactericidal effect. C. Synergy
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Four cationic peptides have progressed to Phase 3 tri-
als, of which half have demonstrated clinical efficacy.23

Pexiganan (a frog HDP derivative) has been used to treat
diabetic foot ulcers and Omiganan (a cattle HDP vari-
ant) has been used for the prevention of catheter-
associated infections). Despite a 90% efficacy, Pexiganan
has not obtained FDA approval for clinical use, but
Omiganan currently is in Phase 3b trials to confirm initial
findings of its clinical usefulness.23 More than a dozen
other peptides and peptidomimetics are currently in com-
mercial development, but the 1st clinically approved
cationic peptide aimed primarily at catheter-associated
infections is likely to be available within the next few
years.23 Thus, cationic antimicrobial peptides have im-
portant potential as model molecules for design of
urgently needed novel pharmaceutical compounds.
Much research is, however, still warranted to assess the
practicality and clinical usefulness of selected com-
pounds from a plethora of naturally occurring HDPs.

Concluding Remarks

The vast majority of species (invertebrates and plants
in particular) rely on innate immunity exclusively to
effectively fight off potentially lethal pathogens and
maintain overall health, whereas immune memory is
somewhat of a biological luxury granted only to species
higher in the evolutionary hierarchy.234 The last 10 years
in particular have placed innate immunity at the fore-
front of immunological research as a rapidly developing
field, continuously leading to novel ideas together with
new discoveries. Increasing antibiotic resistance is a well-
known phenomenon in modern medicine, and novel nat-
ural antibiotics therefore become immediately attractive.
The importance of a well-balanced immunologic re-
sponse has become evident in a variety of different
disease processes (including cardiovascular disease and
cancer),19,235 and the immediate need of novel immuno-
modifying compounds is consequently obvious.
Hopefully much of the ongoing research will translate
into original therapeutics for different immunological
disease processes, potentially opening up exciting new
avenues for immune intervention in veterinary medicine.
The past decade has produced a remarkable amount of

new knowledge on the tissue expression and in vitro ac-
tivity of animal HDPs. Still, these are the formative years
for the investigation of innate immune defense mecha-
nisms as they pertain to animal disease with the ultimate
goal of elucidating the intricate roles of these versatile
peptides in naturally occurring disease affecting small
and large animal species.

Footnotes

aAmphipathic: Molecules that have both hydrophilic and hydro-

phobic parts
bAzurophil: Primary lysosomal granule found in neutrophil granu-

locytes. Contains a wide range of hydrolytic enzymes and is

released into the extracellular fluid
c http://www.bbcm.univ.trieste.it/

dA schematic of the molecular motif of these defensins resembles

the Greek letter ‘‘theta’’ (y)
e Cathelin domain: so called because it is also present in cathelin, a

porcine cysteine protease inhibitor
fRIG-I: retinoic acid inducible gene I. Mda5: Melanoma differenti-

ation associated gene 5. The RNA helicases play an essential role in

double-stranded RNA-induced innate antiviral responses46

gNod: nucleotide-binding oligomerization domain
hMAPK: mitogen-activated protein kinases
i JAK/STAT: Janus kinase/signal transducer and activator of tran-

scription signaling pathway
j Caspases are cysteinyl aspartate-specific proteinases, known for

their role in cytokine maturation and apoptosis52

k Syndecans: cell surface heparan sulfate proteoglycans56

l The concentration of eNAP-2 in equine neutrophil granulocytes is

approximately 4.5–9.0mg/mL84

mMicrobial exoproteases have the potential of acting as virulence

factors, and select anti-proteinase activity may therefore benefit

the host89

n The dense granules distinguish ruminant neutrophils from leuko-

cytes of nonruminant mammals98

o The BNBDs were initially numbered from 1 to 13 based on their

increasing retention time on reversed-phase high performance liq-

uid chromatography (RP-HPLC)99

p The two bactenecins (from the Latin words ‘‘bacterium’’ and ‘‘ne-

care’’ [to kill]) have molecular masses of approximately 5 and

7 kDa, respectively109,110

qAnimal drawings are clip art images (http://office.microsoft.com/

en-us/clipart/default.aspx?lc=en-us)
r Relatively invariant bacterial structures have a low frequency of

mutations, which may explain why resistance to HDPs (which rec-

ognize PAMPs, highly conserved structures) is rare3,248
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